Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ GLUE processors and helpers """ | |
| import logging | |
| import os | |
| import csv | |
| import sys | |
| import copy | |
| import json | |
| from scipy.stats import pearsonr, spearmanr | |
| from sklearn.metrics import matthews_corrcoef, f1_score | |
| from sklearn.preprocessing import MultiLabelBinarizer | |
| logger = logging.getLogger(__name__) | |
| class InputExample(object): | |
| """ | |
| A single training/test example for simple sequence classification. | |
| Args: | |
| guid: Unique id for the example. | |
| text_a: string. The untokenized text of the first sequence. For single | |
| sequence tasks, only this sequence must be specified. | |
| text_b: (Optional) string. The untokenized text of the second sequence. | |
| Only must be specified for sequence pair tasks. | |
| label: (Optional) string. The label of the example. This should be | |
| specified for train and dev examples, but not for test examples. | |
| """ | |
| def __init__(self, guid, text_a, text_b=None, label=None): | |
| self.guid = guid | |
| self.text_a = text_a | |
| self.text_b = text_b | |
| self.label = label | |
| def __repr__(self): | |
| return str(self.to_json_string()) | |
| def to_dict(self): | |
| """Serializes this instance to a Python dictionary.""" | |
| output = copy.deepcopy(self.__dict__) | |
| return output | |
| def to_json_string(self): | |
| """Serializes this instance to a JSON string.""" | |
| return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" | |
| class InputFeatures(object): | |
| """ | |
| A single set of features of data. | |
| Args: | |
| input_ids: Indices of input sequence tokens in the vocabulary. | |
| attention_mask: Mask to avoid performing attention on padding token indices. | |
| Mask values selected in ``[0, 1]``: | |
| Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens. | |
| token_type_ids: Segment token indices to indicate first and second portions of the inputs. | |
| label: Label corresponding to the input | |
| """ | |
| def __init__(self, input_ids, attention_mask=None, token_type_ids=None, label=None): | |
| self.input_ids = input_ids | |
| self.attention_mask = attention_mask | |
| self.token_type_ids = token_type_ids | |
| self.label = label | |
| def __repr__(self): | |
| return str(self.to_json_string()) | |
| def to_dict(self): | |
| """Serializes this instance to a Python dictionary.""" | |
| output = copy.deepcopy(self.__dict__) | |
| return output | |
| def to_json_string(self): | |
| """Serializes this instance to a JSON string.""" | |
| return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" | |
| class DataProcessor(object): | |
| """Base class for data converters for sequence classification data sets.""" | |
| def get_train_examples(self, data_dir): | |
| """Gets a collection of `InputExample`s for the train set.""" | |
| raise NotImplementedError() | |
| def get_dev_examples(self, data_dir): | |
| """Gets a collection of `InputExample`s for the dev set.""" | |
| raise NotImplementedError() | |
| def get_labels(self): | |
| """Gets the list of labels for this data set.""" | |
| raise NotImplementedError() | |
| def _read_tsv(cls, input_file, quotechar=None): | |
| """Reads a tab separated value file.""" | |
| with open(input_file, "r", encoding="utf-8-sig") as f: | |
| reader = csv.reader(f, delimiter="\t", quotechar=quotechar) | |
| lines = [] | |
| for line in reader: | |
| if sys.version_info[0] == 2: | |
| line = list(unicode(cell, 'utf-8') for cell in line) | |
| lines.append(line) | |
| return lines | |
| def _read_json(cls, input_file): | |
| with open(input_file, "r", encoding="utf-8-sig") as f: | |
| lines = json.loads(f.read()) | |
| return lines | |
| def _read_jsonl(cls, input_file): | |
| with open(input_file, "r", encoding="utf-8-sig") as f: | |
| lines = f.readlines() | |
| return lines | |
| def glue_convert_examples_to_features(examples, tokenizer, | |
| max_length=512, | |
| task=None, | |
| label_list=None, | |
| output_mode=None, | |
| pad_on_left=False, | |
| pad_token=0, | |
| pad_token_segment_id=0, | |
| mask_padding_with_zero=True): | |
| """ | |
| Loads a data file into a list of ``InputFeatures`` | |
| Args: | |
| examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples. | |
| tokenizer: Instance of a tokenizer that will tokenize the examples | |
| max_length: Maximum example length | |
| task: GLUE task | |
| label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method | |
| output_mode: String indicating the output mode. Either ``regression`` or ``classification`` | |
| pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) | |
| pad_token: Padding token | |
| pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4) | |
| mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values | |
| and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for | |
| actual values) | |
| Returns: | |
| If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` | |
| containing the task-specific features. If the input is a list of ``InputExamples``, will return | |
| a list of task-specific ``InputFeatures`` which can be fed to the model. | |
| """ | |
| is_tf_dataset = False | |
| if task is not None: | |
| processor = glue_processors[task]() | |
| if label_list is None: | |
| label_list = processor.get_labels() | |
| logger.info("Using label list %s for task %s" % (label_list, task)) | |
| if output_mode is None: | |
| output_mode = glue_output_modes[task] | |
| logger.info("Using output mode %s for task %s" % (output_mode, task)) | |
| label_map = {label: i for i, label in enumerate(label_list)} | |
| features = [] | |
| for (ex_index, example) in enumerate(examples): | |
| if ex_index % 10000 == 0: | |
| logger.info("Writing example %d" % (ex_index)) | |
| if is_tf_dataset: | |
| example = processor.get_example_from_tensor_dict(example) | |
| example = processor.tfds_map(example) | |
| inputs = tokenizer.encode_plus( | |
| example.text_a, | |
| example.text_b, | |
| add_special_tokens=True, | |
| max_length=max_length, | |
| ) | |
| input_ids = inputs["input_ids"] | |
| if "token_type_ids" in inputs: | |
| token_type_ids = inputs["token_type_ids"] | |
| else: | |
| token_type_ids = [] | |
| # The mask has 1 for real tokens and 0 for padding tokens. Only real | |
| # tokens are attended to. | |
| attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) | |
| # Zero-pad up to the sequence length. | |
| padding_length = max_length - len(input_ids) | |
| if pad_on_left: | |
| input_ids = ([pad_token] * padding_length) + input_ids | |
| attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask | |
| if len(token_type_ids) == 0: | |
| padding_length = max_length | |
| token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids | |
| else: | |
| input_ids = input_ids + ([pad_token] * padding_length) | |
| attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) | |
| if len(token_type_ids) == 0: | |
| padding_length = max_length | |
| token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) | |
| assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) | |
| assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask), max_length) | |
| assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(len(token_type_ids), max_length) | |
| if output_mode == "classification": | |
| label = label_map[example.label] | |
| elif output_mode == "regression": | |
| label = float(example.label) | |
| else: | |
| raise KeyError(output_mode) | |
| if ex_index < 5: | |
| logger.info("*** Example ***") | |
| logger.info("guid: %s" % (example.guid)) | |
| logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) | |
| logger.info("input_tokens: %s" % " ".join(tokenizer.convert_ids_to_tokens(input_ids))) | |
| logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) | |
| logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) | |
| logger.info("label: %s (id = %d)" % (example.label, label)) | |
| features.append( | |
| InputFeatures(input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| label=label)) | |
| return features | |
| class MrpcProcessor(DataProcessor): | |
| """Processor for the MRPC data set (GLUE version).""" | |
| def get_example_from_tensor_dict(self, tensor_dict): | |
| """See base class.""" | |
| return InputExample(tensor_dict['idx'].numpy(), | |
| tensor_dict['sentence1'].numpy().decode('utf-8'), | |
| tensor_dict['sentence2'].numpy().decode('utf-8'), | |
| str(tensor_dict['label'].numpy())) | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv"))) | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["0", "1"] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (i, line) in enumerate(lines): | |
| if i == 0: | |
| continue | |
| guid = "%s-%s" % (set_type, i) | |
| text_a = line[3] | |
| text_b = line[4] | |
| label = line[0] | |
| examples.append( | |
| InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
| return examples | |
| class MnliProcessor(DataProcessor): | |
| """Processor for the MultiNLI data set (GLUE version).""" | |
| def get_example_from_tensor_dict(self, tensor_dict): | |
| """See base class.""" | |
| return InputExample(tensor_dict['idx'].numpy(), | |
| tensor_dict['premise'].numpy().decode('utf-8'), | |
| tensor_dict['hypothesis'].numpy().decode('utf-8'), | |
| str(tensor_dict['label'].numpy())) | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), | |
| "dev_matched") | |
| def get_test_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), | |
| "test_matched") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["contradiction", "entailment", "neutral"] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (i, line) in enumerate(lines): | |
| if i == 0: | |
| continue | |
| guid = "%s-%s" % (set_type, line[0]) | |
| text_a = line[8] | |
| text_b = line[9] | |
| label = line[-1] | |
| examples.append( | |
| InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
| return examples | |
| class MnliMismatchedProcessor(MnliProcessor): | |
| """Processor for the MultiNLI Mismatched data set (GLUE version).""" | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), | |
| "dev_mismatched") | |
| def get_test_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), | |
| "test_mismatched") | |
| class ColaProcessor(DataProcessor): | |
| """Processor for the CoLA data set (GLUE version).""" | |
| def get_example_from_tensor_dict(self, tensor_dict): | |
| """See base class.""" | |
| return InputExample(tensor_dict['idx'].numpy(), | |
| tensor_dict['sentence'].numpy().decode('utf-8'), | |
| None, | |
| str(tensor_dict['label'].numpy())) | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["0", "1"] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (i, line) in enumerate(lines): | |
| guid = "%s-%s" % (set_type, i) | |
| text_a = line[3] | |
| label = line[1] | |
| examples.append( | |
| InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) | |
| return examples | |
| class Sst2Processor(DataProcessor): | |
| """Processor for the SST-2 data set (GLUE version).""" | |
| def get_example_from_tensor_dict(self, tensor_dict): | |
| """See base class.""" | |
| return InputExample(tensor_dict['idx'].numpy(), | |
| tensor_dict['sentence'].numpy().decode('utf-8'), | |
| None, | |
| str(tensor_dict['label'].numpy())) | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["0", "1"] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (i, line) in enumerate(lines): | |
| if i == 0: | |
| continue | |
| guid = "%s-%s" % (set_type, i) | |
| text_a = line[0] | |
| label = line[1] | |
| examples.append( | |
| InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) | |
| return examples | |
| class StsbProcessor(DataProcessor): | |
| """Processor for the STS-B data set (GLUE version).""" | |
| def get_example_from_tensor_dict(self, tensor_dict): | |
| """See base class.""" | |
| return InputExample(tensor_dict['idx'].numpy(), | |
| tensor_dict['sentence1'].numpy().decode('utf-8'), | |
| tensor_dict['sentence2'].numpy().decode('utf-8'), | |
| str(tensor_dict['label'].numpy())) | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
| def get_test_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") | |
| def get_labels(self): | |
| """See base class.""" | |
| return [None] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (i, line) in enumerate(lines): | |
| if i == 0: | |
| continue | |
| guid = "%s-%s" % (set_type, line[0]) | |
| text_a = line[1] | |
| text_b = line[2] | |
| label = line[-1] | |
| examples.append( | |
| InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
| return examples | |
| class QqpProcessor(DataProcessor): | |
| """Processor for the QQP data set (GLUE version).""" | |
| def get_example_from_tensor_dict(self, tensor_dict): | |
| """See base class.""" | |
| return InputExample(tensor_dict['idx'].numpy(), | |
| tensor_dict['question1'].numpy().decode('utf-8'), | |
| tensor_dict['question2'].numpy().decode('utf-8'), | |
| str(tensor_dict['label'].numpy())) | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["0", "1"] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (i, line) in enumerate(lines): | |
| if i == 0: | |
| continue | |
| guid = "%s-%s" % (set_type, line[0]) | |
| try: | |
| text_a = line[3] | |
| text_b = line[4] | |
| label = line[5] | |
| except IndexError: | |
| continue | |
| examples.append( | |
| InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
| return examples | |
| class QnliProcessor(DataProcessor): | |
| """Processor for the QNLI data set (GLUE version).""" | |
| def get_example_from_tensor_dict(self, tensor_dict): | |
| """See base class.""" | |
| return InputExample(tensor_dict['idx'].numpy(), | |
| tensor_dict['question'].numpy().decode('utf-8'), | |
| tensor_dict['sentence'].numpy().decode('utf-8'), | |
| str(tensor_dict['label'].numpy())) | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "dev.tsv")), | |
| "dev_matched") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["entailment", "not_entailment"] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (i, line) in enumerate(lines): | |
| if i == 0: | |
| continue | |
| guid = "%s-%s" % (set_type, line[0]) | |
| text_a = line[1] | |
| text_b = line[2] | |
| label = line[-1] | |
| examples.append( | |
| InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
| return examples | |
| class RteProcessor(DataProcessor): | |
| """Processor for the RTE data set (GLUE version).""" | |
| def get_example_from_tensor_dict(self, tensor_dict): | |
| """See base class.""" | |
| return InputExample(tensor_dict['idx'].numpy(), | |
| tensor_dict['sentence1'].numpy().decode('utf-8'), | |
| tensor_dict['sentence2'].numpy().decode('utf-8'), | |
| str(tensor_dict['label'].numpy())) | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["entailment", "not_entailment"] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (i, line) in enumerate(lines): | |
| if i == 0: | |
| continue | |
| guid = "%s-%s" % (set_type, line[0]) | |
| text_a = line[1] | |
| text_b = line[2] | |
| label = line[-1] | |
| examples.append( | |
| InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
| return examples | |
| class WnliProcessor(DataProcessor): | |
| """Processor for the WNLI data set (GLUE version).""" | |
| def get_example_from_tensor_dict(self, tensor_dict): | |
| """See base class.""" | |
| return InputExample(tensor_dict['idx'].numpy(), | |
| tensor_dict['sentence1'].numpy().decode('utf-8'), | |
| tensor_dict['sentence2'].numpy().decode('utf-8'), | |
| str(tensor_dict['label'].numpy())) | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["0", "1"] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (i, line) in enumerate(lines): | |
| if i == 0: | |
| continue | |
| guid = "%s-%s" % (set_type, line[0]) | |
| text_a = line[1] | |
| text_b = line[2] | |
| label = line[-1] | |
| examples.append( | |
| InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
| return examples | |
| class ChemProcessor(DataProcessor): | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
| def get_test_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["false","CPR:3", "CPR:4", "CPR:5", "CPR:6", "CPR:9"] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (i, line) in enumerate(lines): | |
| guid = "%s-%s" % (set_type, line[0]) | |
| text_a = line[1] | |
| label = line[-1] | |
| examples.append( | |
| InputExample(guid=guid, text_a=text_a, label=label)) | |
| return examples | |
| class ARCProcessor(DataProcessor): | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_jsonl(os.path.join(data_dir, "train.jsonl")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_jsonl(os.path.join(data_dir, "dev.jsonl")), "dev") | |
| def get_test_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_jsonl(os.path.join(data_dir, "test.jsonl")), "test") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["CompareOrContrast", "Background", "Uses", "Motivation", "Extends", "Future"] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (i, line) in enumerate(lines): | |
| line = json.loads(line) | |
| guid = "%s-%s" % (set_type, i) | |
| text_a = line["text"] | |
| label = line["label"] | |
| examples.append( | |
| InputExample(guid=guid, text_a=text_a, label=label)) | |
| return examples | |
| class SCIProcessor(DataProcessor): | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_jsonl(os.path.join(data_dir, "train.jsonl")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_jsonl(os.path.join(data_dir, "dev.jsonl")), "dev") | |
| def get_test_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples( | |
| self._read_jsonl(os.path.join(data_dir, "test.jsonl")), "test") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["COMPARE","CONJUNCTION","FEATURE-OF","HYPONYM-OF","USED-FOR","EVALUATE-FOR","PART-OF"] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (i, line) in enumerate(lines): | |
| line = json.loads(line) | |
| guid = "%s-%s" % (set_type, i) | |
| text_a = line["text"] | |
| label = line["label"] | |
| examples.append( | |
| InputExample(guid=guid, text_a=text_a, label=label)) | |
| return examples | |
| glue_tasks_num_labels = { | |
| "cola": 2, | |
| "mnli": 3, | |
| "mrpc": 2, | |
| "sst-2": 2, | |
| "sts-b": 1, | |
| "qqp": 2, | |
| "qnli": 2, | |
| "rte": 2, | |
| "wnli": 2, | |
| "chemprot": 6, | |
| "arc": 6, | |
| "sci": 7, | |
| } | |
| glue_processors = { | |
| "cola": ColaProcessor, | |
| "mnli": MnliProcessor, | |
| "mnli-mm": MnliMismatchedProcessor, | |
| "mrpc": MrpcProcessor, | |
| "sst-2": Sst2Processor, | |
| "sts-b": StsbProcessor, | |
| "qqp": QqpProcessor, | |
| "qnli": QnliProcessor, | |
| "rte": RteProcessor, | |
| "wnli": WnliProcessor, | |
| "chemprot": ChemProcessor, | |
| "arc": ARCProcessor, | |
| "sci": SCIProcessor, | |
| } | |
| glue_output_modes = { | |
| "cola": "classification", | |
| "mnli": "classification", | |
| "mnli-mm": "classification", | |
| "mrpc": "classification", | |
| "sst-2": "classification", | |
| "sts-b": "regression", | |
| "qqp": "classification", | |
| "qnli": "classification", | |
| "rte": "classification", | |
| "wnli": "classification", | |
| "chemprot": "classification", | |
| "arc": "classification", | |
| "sci": "classification", | |
| } | |
| def simple_accuracy(preds, labels): | |
| return (preds == labels).mean() | |
| def acc_and_f1(preds, labels): | |
| acc = simple_accuracy(preds, labels) | |
| f1 = f1_score(y_true=labels, y_pred=preds) | |
| return { | |
| "acc": acc, | |
| "f1": f1, | |
| "acc_and_f1": (acc + f1) / 2, | |
| } | |
| def acc_and_macro_f1(preds, labels): | |
| acc = simple_accuracy(preds, labels) | |
| f1 = f1_score(y_true=labels, y_pred=preds,average="macro") | |
| return { | |
| "f1": f1, | |
| "acc": acc, | |
| "acc_and_f1": (acc + f1) / 2, | |
| } | |
| def acc_and_micro_f1(preds, labels, label_list): | |
| acc = simple_accuracy(preds, labels) | |
| print(label_list) | |
| label_list = [str(i+1) for i in range(len(label_list))] | |
| print(label_list) | |
| mlb = MultiLabelBinarizer(classes = label_list) | |
| labels = labels.tolist() | |
| labels = [str(i) for i in labels] | |
| print(labels[:20]) | |
| labels = mlb.fit_transform(labels) | |
| preds = preds.tolist() | |
| preds = [str(i) for i in preds] | |
| print(preds[:20]) | |
| preds = mlb.fit_transform(preds) | |
| f1 = f1_score(y_true=labels, y_pred=preds,average="micro") | |
| return { | |
| "f1": f1, | |
| "acc": acc, | |
| "f1_macro": f1_score(y_true=labels, y_pred=preds,average="macro"), | |
| "acc_and_f1": (acc + f1) / 2, | |
| } | |
| def pearson_and_spearman(preds, labels): | |
| pearson_corr = pearsonr(preds, labels)[0] | |
| spearman_corr = spearmanr(preds, labels)[0] | |
| return { | |
| "pearson": pearson_corr, | |
| "spearmanr": spearman_corr, | |
| "corr": (pearson_corr + spearman_corr) / 2, | |
| } | |
| def glue_compute_metrics(task_name, preds, labels, label_list): | |
| assert len(preds) == len(labels) | |
| if task_name == "cola": | |
| return {"mcc": matthews_corrcoef(labels, preds)} | |
| elif task_name == "sst-2": | |
| return {"acc": simple_accuracy(preds, labels)} | |
| elif task_name == "mrpc": | |
| return acc_and_f1(preds, labels) | |
| elif task_name == "sts-b": | |
| return pearson_and_spearman(preds, labels) | |
| elif task_name == "qqp": | |
| return acc_and_f1(preds, labels) | |
| elif task_name == "mnli": | |
| return {"acc": simple_accuracy(preds, labels)} | |
| elif task_name == "mnli-mm": | |
| return {"acc": simple_accuracy(preds, labels)} | |
| elif task_name == "qnli": | |
| return {"acc": simple_accuracy(preds, labels)} | |
| elif task_name == "rte": | |
| return {"acc": simple_accuracy(preds, labels)} | |
| elif task_name == "wnli": | |
| return {"acc": simple_accuracy(preds, labels)} | |
| elif task_name == "chemprot": | |
| return acc_and_micro_f1(preds, labels, label_list) | |
| elif task_name == "arc" or task_name == "sci": | |
| return acc_and_macro_f1(preds, labels) | |
| else: | |
| raise KeyError(task_name) | |