File size: 24,280 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
# ------------------------------------------
# TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering
# Paper Link: https://arxiv.org/abs/2311.16465
# Code Link: https://github.com/microsoft/unilm/tree/master/textdiffuser-2
# Copyright (c) Microsoft Corporation.
# ------------------------------------------

import argparse
import logging
import math
import os
import random
import shutil
from pathlib import Path
import glob
import time

import datasets
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset, Dataset

from huggingface_hub import create_repo, upload_folder
from packaging import version
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
from diffusers.loaders import AttnProcsLayers
from diffusers.models.attention_processor import LoRAAttnProcessor
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available

from PIL import Image
import string
alphabet = string.digits + string.ascii_lowercase + string.ascii_uppercase + string.punctuation + ' '  # len(aphabet) = 95
'''alphabet
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ 
'''

logger = get_logger(__name__, log_level="INFO")


def save_model_card(repo_id: str, images=None, base_model=str, dataset_name=str, repo_folder=None):
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
    """
    model_card = f"""
# LoRA text2image fine-tuning - {repo_id}
These are LoRA adaption weights for {base_model}. The weights were fine-tuned on the {dataset_name} dataset. You can find some example images in the following. \n
{img_str}
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default='lambdalabs/pokemon-blip-captions',
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="sd-model-finetuned-lora",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
    parser.add_argument(
        "--rank",
        type=int,
        default=4,
        help=("The dimension of the LoRA update matrices."),
    )
    parser.add_argument(
        "--vis_num",
        type=int,
        default=16,
        help=("The number of images to be visualized."),
    )

    #### newly added parameters
    parser.add_argument(
        "--granularity", 
        type=int, 
        default=128, 
        help="The granularity of coordinates, ranging from 1~512."
    )
    parser.add_argument(
        "--coord_mode", 
        type=str, 
        default='lt',
        choices=['lt', 'center', 'ltrb'],
        help="The way to represent coordinates."
    )
    parser.add_argument(
        "--max_length", 
        default=77,
        type=int, 
        help="Maximum length of the composed prompt."
    )
    parser.add_argument(
        "--cfg", 
        default=7,
        type=float, 
        help="classifier free guidance."
    )
    parser.add_argument(
        "--sample_steps", 
        default=50,
        type=int, 
        help="steps for sampling for diffusion models."
    )
    parser.add_argument(
        "--input_format", 
        required=True,
        type=str, 
        help="specify the input format",
        choices=['prompt', 'prompts_txt_file', 'prompt_layout_txt_file']
    )
    parser.add_argument(
        "--input_prompt", 
        type=str, 
    )
    parser.add_argument(
        "--input_file", 
        type=str, 
    )
    parser.add_argument(
        "--prompts_txt_file", 
        type=str, 
    )
    parser.add_argument(
        "--m1_model_path", 
        type=str, 
        help="the checkpoint of layout planner"
    )

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    return args


DATASET_NAME_MAPPING = {
    # "lambdalabs/pokemon-blip-captions": ("image", "text"),
    "MARIO-10M": ("image", "text"), 
}

def main():
    args = parse_args()
    logging_dir = Path(args.output_dir, args.logging_dir)

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
    )
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
        import wandb

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id
    # Load scheduler, tokenizer and models.
    tokenizer = CLIPTokenizer.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="tokenizer"
    )

    #### additional tokens are introduced, including coordinate tokens and character tokens
    print('***************')
    print(len(tokenizer))
    for i in range(520):
        tokenizer.add_tokens(['l' + str(i) ]) # left
        tokenizer.add_tokens(['t' + str(i) ]) # top
        tokenizer.add_tokens(['r' + str(i) ]) # width
        tokenizer.add_tokens(['b' + str(i) ]) # height    
    for c in alphabet:
        tokenizer.add_tokens([f'[{c}]']) 
    print(len(tokenizer))
    print('***************')

    if args.max_length == 77:
        text_encoder = CLIPTextModel.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="text_encoder", ignore_mismatched_sizes=True
        )
    else:
        #### enlarge the context length of text encoder. empirically, enlarging the context length can proceed longer sequence. However, we observe that it will be hard to render general objects
        text_encoder = CLIPTextModel.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="text_encoder", max_position_embeddings=args.max_length, ignore_mismatched_sizes=True
        )

    text_encoder.resize_token_embeddings(len(tokenizer))

    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
    unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="unet"
    )
    # freeze parameters of models to save more memory
    unet.requires_grad_(False)
    vae.requires_grad_(False)
    text_encoder.requires_grad_(True)

    # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move unet, vae and text_encoder to device and cast to weight_dtype
    unet.to(accelerator.device, dtype=weight_dtype) 
    vae.to(accelerator.device, dtype=weight_dtype)
    # text_encoder.to(accelerator.device, dtype=weight_dtype)

    # now we will add new LoRA weights to the attention layers
    # It's important to realize here how many attention weights will be added and of which sizes
    # The sizes of the attention layers consist only of two different variables:
    # 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`.
    # 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`.

    # Let's first see how many attention processors we will have to set.
    # For Stable Diffusion, it should be equal to:
    # - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12
    # - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2
    # - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18
    # => 32 layers

    # Set correct lora layers
    lora_attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]

        lora_attn_procs[name] = LoRAAttnProcessor(
            hidden_size=hidden_size,
            cross_attention_dim=cross_attention_dim,
            rank=args.rank,
        )

    unet.set_attn_processor(lora_attn_procs)

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    lora_layers = AttnProcsLayers(unet.attn_processors)

    lora_layers, text_encoder = accelerator.prepare(
        lora_layers, text_encoder
    )

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    # # We need to initialize the trackers we use, and also store our configuration.
    # # The trackers initializes automatically on the main process.
    # if accelerator.is_main_process:
    #     accelerator.init_trackers("text2image-fine-tune", config=vars(args))

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            # accelerator.load_state(os.path.join(args.output_dir, path))
            accelerator.load_state(args.resume_from_checkpoint)

    if accelerator.is_main_process and os.path.exists(f'{args.output_dir}'):
        print('detect existing output_dir, removing the contained jpg/txt files ...')
        os.system(f'rm {args.output_dir}/*.jpg')
        os.system(f'rm {args.output_dir}/*.txt')

    # user_prompt = "Book cover of summer vibe, high quality, high resolution"
    # ocrs = [
    #     'Summer Vibe 20,20,100,40'       
    # ]
    
    if args.input_format == 'prompt_layout_txt_file':
        lines = open(args.input_file).readlines()
        user_prompts = [lines[0].strip()]
        ocrs = [lines[1:]]

    elif args.input_format == 'prompt' or args.input_format == 'prompts_txt_file':

        #### prepare m1 (layout planner)
        from fastchat.model import load_model, get_conversation_template
        m1_model, m1_tokenizer = load_model(
            args.m1_model_path,
            'cuda',
            1,
            None,
            False,
            False,
            revision="main",
            debug=False,
        )

        # prompt = 'a text image of hello world'
        prompts = []
        if args.input_format == 'prompt':
            prompts = [args.input_prompt]
        elif args.input_format == 'prompts_txt_file':
            prompts = open(args.prompts_txt_file).readlines()
        print(f'there are {len(prompts)} samples for generation')

        ocrs = []
        user_prompts = []
        for prompt in prompts:
            user_prompt = prompt
            user_prompts.append(user_prompt)
            template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is 128x128. Therefore, all properties of the positions should not exceed 128, including the coordinates of top, left, right, and bottom. All keywords are included in the caption. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {user_prompt}'
            msg = template
            conv = get_conversation_template(args.m1_model_path)
            conv.append_message(conv.roles[0], msg)
            conv.append_message(conv.roles[1], None)
            prompt = conv.get_prompt()
            inputs = m1_tokenizer([prompt], return_token_type_ids=False)
            inputs = {k: torch.tensor(v).to('cuda') for k, v in inputs.items()}
            output_ids = m1_model.generate(
                **inputs,
                do_sample=True,
                temperature=0.7,
                repetition_penalty=1.0,
                max_new_tokens=512,
            )

            if m1_model.config.is_encoder_decoder:
                output_ids = output_ids[0]
            else:
                output_ids = output_ids[0][len(inputs["input_ids"][0]) :]
            outputs = m1_tokenizer.decode(
                output_ids, skip_special_tokens=True, spaces_between_special_tokens=False
            )
            print(f"[{conv.roles[0]}]\n{msg}")
            print(f"[{conv.roles[1]}]\n{outputs}")
            # ocrs = outputs.split('\n')
            ocrs.append(outputs.split('\n'))


    with torch.no_grad():

        size = len(ocrs)
        print(f'the number of samples: {size}')

        time_seed = int(time.time())
        random.seed(time_seed)
        torch.manual_seed(time_seed)
        torch.cuda.manual_seed_all(time_seed)
  
        for sample_index in range(size):

            user_prompt = user_prompts[sample_index]
            current_ocr = ocrs[sample_index]

            ocr_ids = [] 
            print('user_prompt', user_prompt)
            print('current_ocr', current_ocr)

            for ocr in current_ocr:
                ocr = ocr.strip()

                if len(ocr) == 0 or '###' in ocr or '.com' in ocr:
                    continue

                items = ocr.split()
                pred = ' '.join(items[:-1])
                box = items[-1]
            
                l,t,r,b = box.split(',')
                l,t,r,b = int(l), int(t), int(r), int(b)
                ocr_ids.extend(['l'+str(l), 't'+str(t), 'r'+str(r), 'b'+str(b)])

                char_list = list(pred)
                char_list = [f'[{i}]' for i in char_list]
                ocr_ids.extend(char_list)
                ocr_ids.append(tokenizer.eos_token_id)     
        
            caption_ids = tokenizer(
                user_prompt, truncation=True, return_tensors="pt"
            ).input_ids[0].tolist() 

            try:
                ocr_ids = tokenizer.encode(ocr_ids)
                prompt = caption_ids + ocr_ids
            except:
                prompt = caption_ids

            prompt = prompt[:args.max_length]
            while len(prompt) < args.max_length: 
                prompt.append(tokenizer.pad_token_id) 
            prompts_cond = prompt
            prompts_nocond = [tokenizer.pad_token_id]*args.max_length

            prompts_cond = [prompts_cond] * args.vis_num
            prompts_nocond = [prompts_nocond] * args.vis_num

            prompts_cond = torch.Tensor(prompts_cond).long().cuda()
            prompts_nocond = torch.Tensor(prompts_nocond).long().cuda()

            scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") 
            scheduler.set_timesteps(args.sample_steps) 
            noise = torch.randn((args.vis_num, 4, 64, 64)).to("cuda") 
            input = noise

            encoder_hidden_states_cond = text_encoder(prompts_cond)[0]
            encoder_hidden_states_nocond = text_encoder(prompts_nocond)[0] 

            texts = prompts_cond
            f = open(f'{args.output_dir}/prompt_{sample_index}_{args.local_rank}.txt', 'w+')
            for text in texts:
                sentence = tokenizer.decode(text)
                f.write(sentence + '\n')
            f.close()

            for t in tqdm(scheduler.timesteps):
                with torch.no_grad():  # classifier free guidance
                    noise_pred_cond = unet(sample=input.half(), timestep=t, encoder_hidden_states=encoder_hidden_states_cond[:args.vis_num]).sample # b, 4, 64, 64
                    noise_pred_uncond = unet(sample=input.half(), timestep=t, encoder_hidden_states=encoder_hidden_states_nocond[:args.vis_num]).sample # b, 4, 64, 64
                    noisy_residual = noise_pred_uncond + args.cfg * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64     
                    prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
                    input = prev_noisy_sample

            # decode
            input = 1 / vae.config.scaling_factor * input 
            images = vae.decode(input.half(), return_dict=False)[0] 
            width, height = 512, 512
            new_image = Image.new('RGB', (4*width, 4*height))
            for index, image in enumerate(images.float()):
                image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0)
                image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
                image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB')
                row = index // 4
                col = index % 4
                new_image.paste(image, (col*width, row*height))
            new_image.save(f'{args.output_dir}/pred_img_{sample_index}_{args.local_rank}.jpg')

if __name__ == "__main__":
    main()