Spaces:
Sleeping
Sleeping
File size: 8,393 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# SimLM: Pre-training for Similarity Matching
- May 2023: our paper is accepted to ACL 2023
- January 2023: release code
- July 2022: release preprint [SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval](https://aclanthology.org/2023.acl-long.125.pdf)
SimLM is a retrieval-oriented pre-training architecture,
which aims to compress input information into a representation bottleneck
with replaced language modeling objective.

After pre-training,
we use a four-stage supervised fine-tuning pipeline to train state-of-the-art dense retrievers.

## Available models
| Model | Short description |
|-----------------------------|------------------------------------------------------|
| [intfloat/simlm-base-msmarco](https://huggingface.co/intfloat/simlm-base-msmarco) | SimLM pre-trained on MS-MARCO passage corpus |
| [intfloat/simlm-base-msmarco-finetuned](https://huggingface.co/intfloat/simlm-base-msmarco-finetuned) | Fine-tuned SimLM with distillation on MS-MARCO |
| [intfloat/simlm-msmarco-reranker](https://huggingface.co/intfloat/simlm-msmarco-reranker) | Cross-encoder re-ranker on MS-MARCO |
| [intfloat/simlm-base-wiki100w](https://huggingface.co/intfloat/simlm-base-wiki100w) | SimLM pre-trained on [DPR](https://github.com/facebookresearch/DPR)-version Wikipedia passage corpus |
All the models can be loaded with [Huggingface transformers](https://github.com/huggingface/transformers) API:
```python
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained('intfloat/simlm-base-msmarco-finetuned')
tokenizer = AutoTokenizer.from_pretrained('intfloat/simlm-base-msmarco-finetuned')
```
## Requirements
The main dependencies are as follows:
```
python>=3.7
transformers==4.15
datasets==2.0.0
torch>=1.7
deepspeed==0.6.0
pytrec_eval
```
Run the following command to install the required packages:
```shell
pip install -r requirements.txt
```
## Download our pre-processed data
The following script will download our pre-processed data for [MS-MARCO passage ranking](https://microsoft.github.io/msmarco/) task.
```shell
bash scripts/download_msmarco_data.sh
```
## Reproduce SimLM results for MS-MARCO passage ranking
First,
please make sure you have downloaded our pre-processed data.
### Evaluate our fine-tuned biencoder retriever
```shell
export DATA_DIR=./data/msmarco_bm25_official/
export OUTPUT_DIR=./tmp/
# Encode all the corpus passages
bash scripts/encode_marco.sh intfloat/simlm-base-msmarco-finetuned
# Perform nearest-neighbor search for queries
bash scripts/search_marco.sh intfloat/simlm-base-msmarco-finetuned dev
bash scripts/search_marco.sh intfloat/simlm-base-msmarco-finetuned trec_dl2019
bash scripts/search_marco.sh intfloat/simlm-base-msmarco-finetuned trec_dl2020
```
Expected results:
| dev MRR@10 | dev R@50 | dev R@1k | TREC DL 2019 nDCG@10 | TREC DL 2020 nDCG@10 |
|--|---|---|---|---|
| 41.1 | 87.8 | 98.7 | 71.4 | 69.7 |
### Evaluate our released cross-encoder re-ranker
```shell
export DATA_DIR=./data/msmarco_reranker/
export OUTPUT_DIR=./tmp/
bash scripts/rerank_marco.sh intfloat/simlm-msmarco-reranker $DATA_DIR/dev.msmarco.txt dev
bash scripts/rerank_marco.sh intfloat/simlm-msmarco-reranker $DATA_DIR/trec_dl2019.msmarco.txt trec_dl2019
bash scripts/rerank_marco.sh intfloat/simlm-msmarco-reranker $DATA_DIR/trec_dl2020.msmarco.txt trec_dl2020
# Will not compute metrics since test labels are not available
bash scripts/rerank_marco.sh intfloat/simlm-msmarco-reranker $DATA_DIR/test.msmarco.txt test
```
Expected results:
| dev MRR@10 | dev R@50 | dev R@1k | TREC DL 2019 nDCG@10 | TREC DL 2020 nDCG@10 |
|--|---|---|---|---|
| 43.8 | 89.2 | 98.6 | 74.6 | 72.7 |
### Train a biencoder retriever with BM25 hard negatives
GPU requirements: 4 V100 GPUs (32GB)
```shell
export DATA_DIR=./data/msmarco_bm25_official/
export OUTPUT_DIR=./checkpoint/biencoder/
# Train bi-encoder
bash scripts/train_biencoder_marco.sh
# Encode corpus passages
bash scripts/encode_marco.sh $OUTPUT_DIR
# Evaluate on each split
bash scripts/search_marco.sh $OUTPUT_DIR dev
bash scripts/search_marco.sh $OUTPUT_DIR trec_dl2019
bash scripts/search_marco.sh $OUTPUT_DIR trec_dl2020
bash scripts/search_marco.sh $OUTPUT_DIR test
# Predictions for training datasets can be used as mined hard negatives
bash scripts/search_marco.sh $OUTPUT_DIR train
```
Expected results:
| dev MRR@10 | dev R@50 | dev R@1k |
|--|---|---|
| 38.0 | 85.8 | 98.3 |
### Train a biencoder retriever with knowledge distillation
GPU requirements: 4 V100 GPUs (32GB)
```shell
export DATA_DIR=./data/msmarco_distillation/
export OUTPUT_DIR=./checkpoint/distilled_biencoder/
# Train bi-encoder with knowledge distillation
bash scripts/train_kd_biencoder.sh
# Encode corpus passages
bash scripts/encode_marco.sh $OUTPUT_DIR
# Evaluate on each split
bash scripts/search_marco.sh $OUTPUT_DIR dev
bash scripts/search_marco.sh $OUTPUT_DIR trec_dl2019
bash scripts/search_marco.sh $OUTPUT_DIR trec_dl2020
bash scripts/search_marco.sh $OUTPUT_DIR test
```
The results are expected to be close to `intfloat/simlm-base-msmarco-finetuned`.
### Train a cross-encoder re-ranker
GPU requirements: 8 V100 GPUs (32GB)
```shell
export DATA_DIR=./data/msmarco_reranker/
export OUTPUT_DIR=./checkpoint/cross_encoder_reranker/
# Train cross-encoder re-ranker
bash scripts/train_reranker_marco.sh
# Re-rank top-200 outputs by biencoder retrievers
bash scripts/rerank_marco.sh $OUTPUT_DIR $DATA_DIR/dev.msmarco.txt
bash scripts/rerank_marco.sh $OUTPUT_DIR $DATA_DIR/trec_dl2019.msmarco.txt trec_dl2019
bash scripts/rerank_marco.sh $OUTPUT_DIR $DATA_DIR/trec_dl2020.msmarco.txt trec_dl2020
bash scripts/rerank_marco.sh $OUTPUT_DIR $DATA_DIR/test.msmarco.txt test
```
The results are expected to be close to `intfloat/simlm-msmarco-reranker`.
### Pre-train SimLM with target corpus
GPU requirements: 8 V100 GPUs (at least 16GB)
```shell
export DATA_DIR=./data/msmarco_bm25_official/
export OUTPUT_DIR=./checkpoint/replaced_lm/
bash ./scripts/train_rlm.sh
```
After SimLM pre-training,
follow the supervised fine-tuning instructions to evaluate the model's quality.
## Frequently asked questions
1. Do I have to use DeepSpeed launcher?
We highly recommend using [DeepSpeed](https://github.com/microsoft/DeepSpeed) to launch training jobs.
DeepSpeed enables faster training speed and lower GPU memory usage.
If DeepSpeed does not work for you,
you can switch to pytorch launcher by making following changes to the shell script:
```shell
# Uncomment this line to use pytorch launcher and delete the deepspeed command
python -u -m torch.distributed.launch --nproc_per_node 4 src/train_biencoder.py \
# deepspeed src/train_biencoder.py --deepspeed ds_config.json
```
2. Where does the title field in MS-MARCO passage dataset come from?
The title data comes from [RocketQA](https://github.com/PaddlePaddle/RocketQA),
which is also used for training by [coCondenser](https://arxiv.org/abs/2108.05540).
For any other questions,
please open a GitHub issue or contact Liang Wang ([email protected]).
## Acknowledgments
Part of the code is based on [Tevatron](https://github.com/texttron/tevatron).
## Citation
If you find our paper or code helpful,
please consider citing as follows:
```bibtex
@inproceedings{wang-etal-2023-simlm,
title = "{S}im{LM}: Pre-training with Representation Bottleneck for Dense Passage Retrieval",
author = "Wang, Liang and
Yang, Nan and
Huang, Xiaolong and
Jiao, Binxing and
Yang, Linjun and
Jiang, Daxin and
Majumder, Rangan and
Wei, Furu",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.125",
pages = "2244--2258",
}
```
## License
This project is licensed under the license found in the LICENSE file in the root directory of this source tree.
[Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct)
|