File size: 6,929 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import pickle
import math
import argparse
import glob
import logging
from pathlib import Path
from tqdm import tqdm
import unicodedata

from transformers import BertTokenizer, RobertaTokenizer, XLMRobertaTokenizer
from s2s_ft.tokenization_unilm import UnilmTokenizer
from s2s_ft.tokenization_minilm import MinilmTokenizer


logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt='%m/%d/%Y %H:%M:%S',
                    level=logging.INFO)
logger = logging.getLogger(__name__)


TOKENIZER_CLASSES = {
    'bert': BertTokenizer,
    'minilm': MinilmTokenizer,
    'roberta': RobertaTokenizer,
    'unilm': UnilmTokenizer,
    'xlm-roberta': XLMRobertaTokenizer, 
}


def read_traces_from_file(file_name):
    with open(file_name, "rb") as fin:
        meta = pickle.load(fin)
        num_samples = meta["num_samples"]
        samples = []
        for _ in range(num_samples):
            samples.append(pickle.load(fin))
    return samples


def get_best_sequence(sample, eos_id, pad_id, length_penalty=None, alpha=None, expect=None, min_len=None):
    # if not any((length_penalty, alpha, expect, min_len)):
    #     raise ValueError(
    #         "You can only specify length penalty or alpha, but not both.")
    scores = sample["scores"]
    wids_list = sample["wids"]
    ptrs = sample["ptrs"]

    last_frame_id = len(scores) - 1
    for i, wids in enumerate(wids_list):
        if all(wid in (eos_id, pad_id) for wid in wids):
            last_frame_id = i
            break
    while all(wid == pad_id for wid in wids_list[last_frame_id]):
        last_frame_id -= 1

    max_score = -math.inf
    frame_id = -1
    pos_in_frame = -1

    for fid in range(last_frame_id + 1):
        for i, wid in enumerate(wids_list[fid]):
            if fid <= last_frame_id and scores[fid][i] >= 0:
                # skip paddings
                continue
            if (wid in (eos_id, pad_id)) or fid == last_frame_id:
                s = scores[fid][i]
                if length_penalty:
                    if expect:
                        s -= length_penalty * math.fabs(fid+1 - expect)
                    else:
                        s += length_penalty * (fid + 1)
                elif alpha:
                    s = s / math.pow((5 + fid + 1) / 6.0, alpha)
                if s > max_score:
                    # if (frame_id != -1) and min_len and (fid+1 < min_len):
                    #     continue
                    max_score = s
                    frame_id = fid
                    pos_in_frame = i
    if frame_id == -1:
        seq = []
    else:
        seq = [wids_list[frame_id][pos_in_frame]]
        for fid in range(frame_id, 0, -1):
            pos_in_frame = ptrs[fid][pos_in_frame]
            seq.append(wids_list[fid - 1][pos_in_frame])
        seq.reverse()
    return seq


def detokenize(tk_list):
    r_list = []
    for tk in tk_list:
        if tk.startswith('##') and len(r_list) > 0:
            r_list[-1] = r_list[-1] + tk[2:]
        else:
            r_list.append(tk)
    return r_list


def simple_postprocess(tk_list):
    # truncate duplicate punctuations
    while tk_list and len(tk_list) > 4 and len(tk_list[-1]) == 1 and unicodedata.category(tk_list[-1]).startswith('P') and all(it == tk_list[-1] for it in tk_list[-4:]):
        tk_list = tk_list[:-3]
    return tk_list


# def include_unk(line):
#     return " UNK ".join(line.split('<unk>')).strip()


def main(args):
    tokenizer = TOKENIZER_CLASSES[args.model_type].from_pretrained(
        args.tokenizer_name, do_lower_case=args.do_lower_case, 
        cache_dir=args.cache_dir if args.cache_dir else None)
    eos_token = tokenizer.sep_token
    pad_token = tokenizer.pad_token

    eos_id, pad_id = tokenizer.convert_tokens_to_ids([eos_token, pad_token])
    logger.info("*********************************************")
    logger.info(" EOS TOKEN = {}, ID = {}".format(eos_token, eos_id))
    logger.info(" PAD TOKEN = {}, ID = {}".format(pad_token, pad_id))
    logger.info("*********************************************")

    for input_file in tqdm(glob.glob(args.input)):
        if not Path(input_file+'.trace.pickle').exists():
            continue
        print(input_file)
        samples = read_traces_from_file(input_file+'.trace.pickle')

        results = []

        for s in samples:
            word_ids = get_best_sequence(s, eos_id, pad_id, alpha=args.alpha,
                                         length_penalty=args.length_penalty, expect=args.expect, min_len=args.min_len)
            tokens = tokenizer.convert_ids_to_tokens(word_ids)
            buf = []
            for t in tokens:
                if t in (eos_token, pad_token):
                    break
                else:
                    buf.append(t)
            if args.model_type == "roberta" or args.model_type == "xlm-roberta":
                output_text = " ".join(simple_postprocess(tokenizer.convert_tokens_to_string(buf).split(' ')))
                if '\n' in output_text:
                    output_text = " [X_SEP] ".join(output_text.split('\n'))
            else:
                output_text = " ".join(simple_postprocess(detokenize(buf)))

            results.append(output_text)

        fn_out = input_file + '.'
        if args.length_penalty:
            fn_out += 'lenp'+str(args.length_penalty)
        if args.expect:
            fn_out += 'exp'+str(args.expect)
        if args.alpha:
            fn_out += 'alp'+str(args.alpha)
        if args.min_len:
            fn_out += 'minl'+str(args.min_len)
        with open(fn_out, "w", encoding="utf-8") as fout:
            for line in results:
                fout.write(line)
                fout.write("\n")
        logger.info("Output file = [%s]" % fn_out)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--input", type=str, help="Input file.")
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(TOKENIZER_CLASSES.keys()))
    parser.add_argument("--alpha", default=None, type=float)
    parser.add_argument("--length_penalty", default=None, type=float)
    parser.add_argument("--expect", default=None, type=float,
                        help="Expectation of target length.")
    parser.add_argument("--min_len", default=None, type=int)
    # tokenizer_name
    parser.add_argument("--tokenizer_name", default=None, type=str, required=True, 
                        help="tokenizer name")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--cache_dir", default=None, type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    args = parser.parse_args()

    main(args)