Spaces:
Sleeping
Sleeping
File size: 13,757 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import json
import glob
import logging
import argparse
import math
from tqdm import tqdm
import numpy as np
import torch
import random
import pickle
from s2s_ft.modeling_decoding import BertForSeq2SeqDecoder, BertConfig
from transformers.tokenization_bert import whitespace_tokenize
import s2s_ft.s2s_loader as seq2seq_loader
from s2s_ft.utils import load_and_cache_examples
from transformers import \
BertTokenizer, RobertaTokenizer, XLMRobertaTokenizer, ElectraTokenizer
from s2s_ft.tokenization_unilm import UnilmTokenizer
from s2s_ft.tokenization_minilm import MinilmTokenizer
TOKENIZER_CLASSES = {
'bert': BertTokenizer,
'minilm': MinilmTokenizer,
'roberta': RobertaTokenizer,
'unilm': UnilmTokenizer,
'xlm-roberta': XLMRobertaTokenizer,
'electra': ElectraTokenizer,
}
class WhitespaceTokenizer(object):
def tokenize(self, text):
return whitespace_tokenize(text)
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def detokenize(tk_list):
r_list = []
for tk in tk_list:
if tk.startswith('##') and len(r_list) > 0:
r_list[-1] = r_list[-1] + tk[2:]
else:
r_list.append(tk)
return r_list
def ascii_print(text):
text = text.encode("ascii", "ignore")
print(text)
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(TOKENIZER_CLASSES.keys()))
parser.add_argument("--model_path", default=None, type=str, required=True,
help="Path to the model checkpoint.")
parser.add_argument("--config_path", default=None, type=str,
help="Path to config.json for the model.")
# tokenizer_name
parser.add_argument("--tokenizer_name", default=None, type=str, required=True,
help="tokenizer name")
parser.add_argument("--max_seq_length", default=512, type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
# decoding parameters
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--no_cuda', action='store_true',
help="Whether to use CUDA for decoding")
parser.add_argument("--input_file", type=str, help="Input file")
parser.add_argument('--subset', type=int, default=0,
help="Decode a subset of the input dataset.")
parser.add_argument("--output_file", type=str, help="output file")
parser.add_argument("--split", type=str, default="",
help="Data split (train/val/test).")
parser.add_argument('--tokenized_input', action='store_true',
help="Whether the input is tokenized.")
parser.add_argument('--seed', type=int, default=123,
help="random seed for initialization")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument('--batch_size', type=int, default=4,
help="Batch size for decoding.")
parser.add_argument('--beam_size', type=int, default=1,
help="Beam size for searching")
parser.add_argument('--length_penalty', type=float, default=0,
help="Length penalty for beam search")
parser.add_argument('--forbid_duplicate_ngrams', action='store_true')
parser.add_argument('--forbid_ignore_word', type=str, default=None,
help="Forbid the word during forbid_duplicate_ngrams")
parser.add_argument("--min_len", default=1, type=int)
parser.add_argument('--need_score_traces', action='store_true')
parser.add_argument('--ngram_size', type=int, default=3)
parser.add_argument('--mode', default="s2s",
choices=["s2s", "l2r", "both"])
parser.add_argument('--max_tgt_length', type=int, default=128,
help="maximum length of target sequence")
parser.add_argument('--s2s_special_token', action='store_true',
help="New special tokens ([S2S_SEP]/[S2S_CLS]) of S2S.")
parser.add_argument('--s2s_add_segment', action='store_true',
help="Additional segmental for the encoder of S2S.")
parser.add_argument('--s2s_share_segment', action='store_true',
help="Sharing segment embeddings for the encoder of S2S (used with --s2s_add_segment).")
parser.add_argument('--pos_shift', action='store_true',
help="Using position shift for fine-tuning.")
parser.add_argument("--cache_dir", default=None, type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
args = parser.parse_args()
if args.need_score_traces and args.beam_size <= 1:
raise ValueError(
"Score trace is only available for beam search with beam size > 1.")
if args.max_tgt_length >= args.max_seq_length - 2:
raise ValueError("Maximum tgt length exceeds max seq length - 2.")
device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
if args.seed > 0:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
else:
random_seed = random.randint(0, 10000)
logger.info("Set random seed as: {}".format(random_seed))
random.seed(random_seed)
np.random.seed(random_seed)
torch.manual_seed(random_seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
tokenizer = TOKENIZER_CLASSES[args.model_type].from_pretrained(
args.tokenizer_name, do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None)
if args.model_type == "roberta":
vocab = tokenizer.encoder
elif args.model_type == "xlm-roberta":
vocab = {}
for tk_id in range(len(tokenizer)):
tk = tokenizer._convert_id_to_token(tk_id)
vocab[tk] = tk_id
else:
vocab = tokenizer.vocab
if hasattr(tokenizer, 'model_max_length'):
tokenizer.model_max_length = args.max_seq_length
elif hasattr(tokenizer, 'max_len'):
tokenizer.max_len = args.max_seq_length
mask_word_id, eos_word_ids, sos_word_id = tokenizer.convert_tokens_to_ids(
[tokenizer.mask_token, tokenizer.sep_token, tokenizer.sep_token])
forbid_ignore_set = None
if args.forbid_ignore_word:
w_list = []
for w in args.forbid_ignore_word.split('|'):
if w.startswith('[') and w.endswith(']'):
w_list.append(w.upper())
else:
w_list.append(w)
forbid_ignore_set = set(tokenizer.convert_tokens_to_ids(w_list))
print(args.model_path)
found_checkpoint_flag = False
for model_recover_path in glob.glob(args.model_path):
if not os.path.isdir(model_recover_path):
continue
logger.info("***** Recover model: %s *****", model_recover_path)
config_file = args.config_path if args.config_path else os.path.join(model_recover_path, "config.json")
logger.info("Read decoding config from: %s" % config_file)
config = BertConfig.from_json_file(config_file)
bi_uni_pipeline = []
bi_uni_pipeline.append(seq2seq_loader.Preprocess4Seq2seqDecoder(
list(vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length,
max_tgt_length=args.max_tgt_length, pos_shift=args.pos_shift,
source_type_id=config.source_type_id, target_type_id=config.target_type_id,
cls_token=tokenizer.cls_token, sep_token=tokenizer.sep_token, pad_token=tokenizer.pad_token))
found_checkpoint_flag = True
model = BertForSeq2SeqDecoder.from_pretrained(
model_recover_path, config=config, mask_word_id=mask_word_id, search_beam_size=args.beam_size,
length_penalty=args.length_penalty, eos_id=eos_word_ids, sos_id=sos_word_id,
forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set,
ngram_size=args.ngram_size, min_len=args.min_len, mode=args.mode,
max_position_embeddings=args.max_seq_length, pos_shift=args.pos_shift,
)
if args.fp16:
model.half()
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
torch.cuda.empty_cache()
model.eval()
next_i = 0
max_src_length = args.max_seq_length - 2 - args.max_tgt_length
if args.pos_shift:
max_src_length += 1
to_pred = load_and_cache_examples(
args.input_file, tokenizer, local_rank=-1,
cached_features_file=None, shuffle=False, eval_mode=True)
input_lines = []
for line in to_pred:
input_lines.append(tokenizer.convert_ids_to_tokens(line.source_ids)[:max_src_length])
if args.subset > 0:
logger.info("Decoding subset: %d", args.subset)
input_lines = input_lines[:args.subset]
input_lines = sorted(list(enumerate(input_lines)),
key=lambda x: -len(x[1]))
output_lines = [""] * len(input_lines)
score_trace_list = [None] * len(input_lines)
total_batch = math.ceil(len(input_lines) / args.batch_size)
with tqdm(total=total_batch) as pbar:
batch_count = 0
first_batch = True
while next_i < len(input_lines):
_chunk = input_lines[next_i:next_i + args.batch_size]
buf_id = [x[0] for x in _chunk]
buf = [x[1] for x in _chunk]
next_i += args.batch_size
batch_count += 1
max_a_len = max([len(x) for x in buf])
instances = []
for instance in [(x, max_a_len) for x in buf]:
for proc in bi_uni_pipeline:
instances.append(proc(instance))
with torch.no_grad():
batch = seq2seq_loader.batch_list_to_batch_tensors(
instances)
batch = [
t.to(device) if t is not None else None for t in batch]
input_ids, token_type_ids, position_ids, input_mask, mask_qkv, task_idx = batch
traces = model(input_ids, token_type_ids,
position_ids, input_mask, task_idx=task_idx, mask_qkv=mask_qkv)
if args.beam_size > 1:
traces = {k: v.tolist() for k, v in traces.items()}
output_ids = traces['pred_seq']
else:
output_ids = traces.tolist()
for i in range(len(buf)):
w_ids = output_ids[i]
output_buf = tokenizer.convert_ids_to_tokens(w_ids)
output_tokens = []
for t in output_buf:
if t in (tokenizer.sep_token, tokenizer.pad_token):
break
output_tokens.append(t)
if args.model_type == "roberta" or args.model_type == "xlm-roberta":
output_sequence = tokenizer.convert_tokens_to_string(output_tokens)
else:
output_sequence = ' '.join(detokenize(output_tokens))
if '\n' in output_sequence:
output_sequence = " [X_SEP] ".join(output_sequence.split('\n'))
output_lines[buf_id[i]] = output_sequence
if first_batch or batch_count % 50 == 0:
logger.info("{} = {}".format(buf_id[i], output_sequence))
if args.need_score_traces:
score_trace_list[buf_id[i]] = {
'scores': traces['scores'][i], 'wids': traces['wids'][i], 'ptrs': traces['ptrs'][i]}
pbar.update(1)
first_batch = False
if args.output_file:
fn_out = args.output_file
else:
fn_out = model_recover_path+'.'+args.split
with open(fn_out, "w", encoding="utf-8") as fout:
for l in output_lines:
fout.write(l)
fout.write("\n")
if args.need_score_traces:
with open(fn_out + ".trace.pickle", "wb") as fout_trace:
pickle.dump(
{"version": 0.0, "num_samples": len(input_lines)}, fout_trace)
for x in score_trace_list:
pickle.dump(x, fout_trace)
if not found_checkpoint_flag:
logger.info("Not found the model checkpoint file!")
if __name__ == "__main__":
main()
|