Spaces:
Sleeping
Sleeping
File size: 16,725 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
# InfoXLM
**Cross-Lingual Language Model Pre-training**
## Overview
Code for pretraining cross-lingual language models. This repo provides implementations of various cross-lingual language models, including:
- **InfoXLM** (NAACL 2021, [paper](https://arxiv.org/pdf/2007.07834.pdf), [repo](https://github.com/microsoft/unilm/tree/master/infoxlm), [model](https://huggingface.co/microsoft/infoxlm-base)) InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training.
- **XLM-E** (arXiv 2021, [paper](https://arxiv.org/pdf/2106.16138.pdf)) XLM-E: Cross-lingual Language Model Pre-training via ELECTRA
- **XLM-Align** (ACL 2021, [paper](https://aclanthology.org/2021.acl-long.265/), [repo](https://github.com/CZWin32768/XLM-Align), [model](https://huggingface.co/microsoft/xlm-align-base)) Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment
- **mBERT** Pretraining BERT on multilingual text with the masked language modeling (MLM) task.
- **XLM** Pretraining Transformer encoder with masked language modeling (MLM) and translation language modeling (TLM).
The following models will be also added to this repo ASAP:
- **XNLG** (AAAI 2020, [paper](https://arxiv.org/pdf/1909.10481.pdf), [repo](https://github.com/CZWin32768/XNLG)) multilingual/cross-lingual pre-trained model for natural language generation, e.g., finetuning XNLG with English abstractive summarization (AS) data and directly performing French AS or even Chinese-French AS.
- **mT6** ([paper](https://arxiv.org/abs/2104.08692)) mT6: Multilingual Pretrained Text-to-Text Transformer with Translation Pairs
## How to Use
### From Hugging Face model hub
We provide the models in Hugging Face format, so you can use the model directly with Hugging Face API:
**XLM-Align**
```python
model = AutoModel.from_pretrained("microsoft/xlm-align-base")
tokenizer = AutoTokenizer.from_pretrained("microsoft/xlm-align-base")
```
**InfoXLM-base**
```python
model = AutoModel.from_pretrained("microsoft/infoxlm-base")
tokenizer = AutoTokenizer.from_pretrained("microsoft/infoxlm-base")
```
**InfoXLM-large**
```python
model = AutoModel.from_pretrained("microsoft/infoxlm-large")
tokenizer = AutoTokenizer.from_pretrained("microsoft/infoxlm-large")
```
### Finetuning on end tasks
Our models use the same vocabulary, tokenizer, and architecture with XLM-Roberta. So you can directly use the existing codes for finetuning XLM-R, **just by replacing the model name from `xlm-roberta-base` to `microsoft/xlm-align-base`, `microsoft/infoxlm-base`, or `microsoft/infoxlm-base`**.
For example, you can evaluate our model with [xTune](https://github.com/bozheng-hit/xTune)[3] on the XTREME benchmark.
## Pretraining
### Environment
The recommended way to run the code is using docker:
```bash
docker run -it --rm --runtime=nvidia --ipc=host --privileged pytorch/pytorch:1.4-cuda10.1-cudnn7-devel bash
```
The docker is initialized by:
```bash
. .bashrc
apt-get update
apt-get install -y vim wget ssh
PWD_DIR=$(pwd)
cd $(mktemp -d)
# install apex
git clone -q https://github.com/NVIDIA/apex.git
cd apex
git reset --hard 11faaca7c8ff7a7ba6d55854a9ee2689784f7ca5
python setup.py install --user --cuda_ext --cpp_ext
cd ..
cd $PWD_DIR
git clone https://github.com/microsoft/unilm
cd unilm/infoxlm
# install fairseq https://github.com/CZWin32768/fairseq/tree/czw
pip install --user --editable ./fairseq
# install infoxlm
pip install --user --editable ./src-infoxlm
```
### Prepare Training Data
All the training data are preprocessed into fairseq mmap format.
**Prepare MLM data**
The MLM training data should be preprocessed into token blocks with the length of 512.
**Step1**: Prepare training data in text format with one sentence per line. The text file should contain multilingual unlabeled text.
Example:
```
This is just an example.
Bonjour!
今天天气怎么样?
...
```
**Step2**: Convert to token blocks with the length of 512 in fairseq `mmap` format
Example:
```
<s> This is just an example . </s> Bonjour ! </s> 今天 天气 怎么样 ? </s>
...
```
Command:
```
python ./tools/txt2bin.py \
--model_name microsoft/xlm-align-base \
--input /path/to/text.txt \
--output /path/to/output/dir
```
**Step3**: Put the `dict.txt` to the data dir. (Note: In InfoXLM and XLM-Align, we use the same `dict.txt` as [the dict file of XLM-R](https://github.com/pytorch/fairseq/tree/master/examples/xlmr). )
**Prepare TLM Data**
**Step1**: Prepare parallel data in text format with one sentence per line.
Example:
At en-zh.en.txt
```
This is just an example.
Hello world!
...
```
At en-zh.zh.txt
```
这只是一个例子。
你好世界!
...
```
**Step2**: Concatenate the parallel sentences into fairseq `mmap` format.
Example:
```
<s> This is just an example . <\s> 这 只是 一个 例 子 。 <\s>
<s> Hello world ! <\s> 你好 世界 !<\s>
...
```
Command:
```
python ./tools/para2bin.py \
--model_name microsoft/xlm-align-base \
--input_src /path/to/src-trg.src.txt \
--input_trg /path/to/src-trg.trg.txt \
--output /path/to/output/dir
```
**Prepare XlCo Data**
**Step1**: Prepare parallel data in text format with one sentence per line.
**Step2**: Alternately store the token indices of the two input files, and save the resulting dataset into fairseq `mmap` format.
Example:
```
<s> This is just an example . </s>
<s> 这 只是 一个 例 子 。 </s>
<s> Hello world ! </s>
<s> 你好 世界 ! </s>
...
```
Command:
```
python ./tools/para2bin.py \
--model_name microsoft/xlm-align-base \
--input_src /path/to/src-trg.src.txt \
--input_trg /path/to/src-trg.trg.txt \
--output /path/to/output/dir
```
### Pretrain InfoXLM
Continue-train InfoXLM-base from XLM-R-base
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python src-infoxlm/train.py ${MLM_DATA_DIR} \
--task infoxlm --criterion xlco \
--tlm_data ${TLM_DATA_DIR} \
--xlco_data ${XLCO_DATA_DIR} \
--arch infoxlm_base --sample-break-mode complete --tokens-per-sample 512 \
--optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 1.0 \
--lr-scheduler polynomial_decay --lr 0.0002 --warmup-updates 10000 \
--total-num-update 200000 --max-update 200000 \
--dropout 0.0 --attention-dropout 0.0 --weight-decay 0.01 \
--max-sentences 16 --update-freq 16 \
--log-format simple --log-interval 1 --disable-validation \
--save-interval-updates 5000 --no-epoch-checkpoints \
--fp16 --fp16-init-scale 128 --fp16-scale-window 128 --min-loss-scale 0.0001 \
--seed 1 \
--save-dir .${SAVE_DIR}/ \
--tensorboard-logdir .${SAVE_DIR}/tb-log \
--roberta-model-path /path/to/model.pt \
--num-workers 4 --ddp-backend=c10d --distributed-no-spawn \
--xlco_layer 8 --xlco_queue_size 131072 --xlco_lambda 1.0 \
--xlco_momentum constant,0.9999 --use_proj
```
- `${MLM_DATA_DIR}`: directory to mlm training data.
- `${SAVE_DIR}`: checkpoints are saved in this folder.
- `--max-sentences 8`: batch size per GPU.
- `--update-freq 32`: gradient accumulation steps. (total batch size = TOTAL_NUM_GPU x max-sentences x update-freq = 8 x 16 x 16 = 2048)
- `--roberta-model-path`: the checkpoint path to an existing roberta model (as the initialization of the current model). For learning from scratch, remove this line. The `model.pt` file of XLM-R can be downloaded from [here](https://github.com/pytorch/fairseq/tree/master/examples/xlmr)
- `--xlco_layer`: the layer to perform cross-lingual contrast (XlCo)
- `--xlco_lambda`: the weight of XlCo loss
### Pretrain XLM-Align
Continue-train XLM-Align-base from XLM-R-base
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python src-infoxlm/train.py ${MLM_DATA_DIR} \
--task xlm_align --criterion dwa_mlm_tlm \
--tlm_data ${TLM_DATA_DIR} \
--arch xlm_align_base --sample-break-mode complete --tokens-per-sample 512 \
--optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 \
--clip-norm 1.0 --lr-scheduler polynomial_decay --lr 0.0002 \
--warmup-updates 10000 --total-num-update 200000 --max-update 200000 \
--dropout 0.0 --attention-dropout 0.0 --weight-decay 0.01 \
--max-sentences 16 --update-freq 16 --log-format simple \
--log-interval 1 --disable-validation --save-interval-updates 5000 --no-epoch-checkpoints \
--fp16 --fp16-init-scale 128 --fp16-scale-window 128 --min-loss-scale 0.0001 \
--seed 1 \
--save-dir .${SAVE_DIR} \
--tensorboard-logdir .${SAVE_DIR}/tb-log \
--roberta-model-path /path/to/model.pt \
--num-workers 2 --ddp-backend=c10d --distributed-no-spawn \
--wa_layer 10 --wa_max_count 2 --sinkhorn_iter 2
```
- `${MLM_DATA_DIR}`: directory to mlm training data.
- `${SAVE_DIR}`: checkpoints are saved in this folder.
- `--max-sentences 8`: batch size per GPU.
- `--update-freq 32`: gradient accumulation steps. (total batch size = TOTAL_NUM_GPU x max-sentences x update-freq = 8 x 16 x 16 = 2048)
- `--roberta-model-path`: the checkpoint path to an existing roberta model (as the initialization of the current model). For learning from scratch, remove this line.
- `--wa_layer`: the layer to perform word alignment self-labeling
- `--wa_max_count`: the number of iterative alignment filtering
- `--sinkhorn_iter`: the number of the iteration in Sinkhorn's algorithm
### Pretrain MLM
Continue-train MLM / mBert from XLM-R-base
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python src-infoxlm/train.py ${MLM_DATA_DIR} \
--task mlm --criterion masked_lm \
--arch reload_roberta_base --sample-break-mode complete --tokens-per-sample 512 \
--optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 1.0 \
--lr-scheduler polynomial_decay --lr 0.0002 --warmup-updates 10000 \
--total-num-update 200000 --max-update 200000 \
--dropout 0.0 --attention-dropout 0.0 --weight-decay 0.01 \
--max-sentences 32 --update-freq 8 \
--log-format simple --log-interval 1 --disable-validation \
--save-interval-updates 5000 --no-epoch-checkpoints \
--fp16 --fp16-init-scale 128 --fp16-scale-window 128 --min-loss-scale 0.0001 \
--seed 1 \
--save-dir .${SAVE_DIR}/ \
--tensorboard-logdir .${SAVE_DIR}/tb-log \
--roberta-model-path /path/to/model.pt \
--num-workers 2 --ddp-backend=c10d --distributed-no-spawn
```
Pretraining MLM / mBERT from scratch
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python src-infoxlm/train.py ${MLM_DATA_DIR} \
--task mlm --criterion masked_lm \
--arch reload_roberta_base --sample-break-mode complete --tokens-per-sample 512 \
--optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 1.0 \
--lr-scheduler polynomial_decay --lr 0.0001 --warmup-updates 10000 \
--total-num-update 1000000 --max-update 1000000 \
--dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
--max-sentences 32 --update-freq 1 \
--log-format simple --log-interval 1 --disable-validation \
--save-interval-updates 5000 --no-epoch-checkpoints \
--fp16 --fp16-init-scale 128 --fp16-scale-window 128 --min-loss-scale 0.0001 \
--seed 1 \
--save-dir .${SAVE_DIR}/ \
--tensorboard-logdir .${SAVE_DIR}/tb-log \
--num-workers 2 --ddp-backend=c10d --distributed-no-spawn
```
### Pretrain MLM+TLM
Continue-train MLM+TLM from XLM-R-base
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python src-infoxlm/train.py ${MLM_DATA_DIR} \
--tlm_data ${TLM_DATA_DIR} \
--task tlm --criterion masked_lm \
--arch reload_roberta_base --sample-break-mode complete --tokens-per-sample 512 \
--optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 1.0 \
--lr-scheduler polynomial_decay --lr 0.0002 --warmup-updates 10000 \
--total-num-update 200000 --max-update 200000 \
--dropout 0.0 --attention-dropout 0.0 --weight-decay 0.01 \
--max-sentences 32 --update-freq 8 \
--log-format simple --log-interval 1 --disable-validation \
--save-interval-updates 5000 --no-epoch-checkpoints \
--fp16 --fp16-init-scale 128 --fp16-scale-window 128 --min-loss-scale 0.0001 \
--seed 1 \
--save-dir .${SAVE_DIR}/ \
--tensorboard-logdir .${SAVE_DIR}/tb-log \
--roberta-model-path /path/to/model.pt \
--num-workers 2 --ddp-backend=c10d --distributed-no-spawn
```
Pretraining MLM+TLM from scratch
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python src-infoxlm/train.py ${MLM_DATA_DIR} \
--tlm_data ${TLM_DATA_DIR} \
--task tlm --criterion masked_lm \
--arch reload_roberta_base --sample-break-mode complete --tokens-per-sample 512 \
--optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 1.0 \
--lr-scheduler polynomial_decay --lr 0.0001 --warmup-updates 10000 \
--total-num-update 1000000 --max-update 1000000 \
--dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
--max-sentences 32 --update-freq 1 \
--log-format simple --log-interval 1 --disable-validation \
--save-interval-updates 5000 --no-epoch-checkpoints \
--fp16 --fp16-init-scale 128 --fp16-scale-window 128 --min-loss-scale 0.0001 \
--seed 1 \
--save-dir .${SAVE_DIR}/ \
--tensorboard-logdir .${SAVE_DIR}/tb-log \
--num-workers 2 --ddp-backend=c10d --distributed-no-spawn
```
## References
Please cite the papers if you found the resources in this repository useful.
[1] **XLM-Align** (ACL 2021, [paper](https://aclanthology.org/2021.acl-long.265/), [repo](https://github.com/CZWin32768/XLM-Align), [model](https://huggingface.co/microsoft/xlm-align-base)) Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment
```
@inproceedings{xlmalign,
title = "Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment",
author={Zewen Chi and Li Dong and Bo Zheng and Shaohan Huang and Xian-Ling Mao and Heyan Huang and Furu Wei},
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.265",
doi = "10.18653/v1/2021.acl-long.265",
pages = "3418--3430",}
```
[2] **InfoXLM** (NAACL 2021, [paper](https://arxiv.org/pdf/2007.07834.pdf), [repo](https://github.com/microsoft/unilm/tree/master/infoxlm), [model](https://huggingface.co/microsoft/infoxlm-base)) InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training.
```
@inproceedings{chi-etal-2021-infoxlm,
title = "{I}nfo{XLM}: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training",
author={Chi, Zewen and Dong, Li and Wei, Furu and Yang, Nan and Singhal, Saksham and Wang, Wenhui and Song, Xia and Mao, Xian-Ling and Huang, Heyan and Zhou, Ming},
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.280",
doi = "10.18653/v1/2021.naacl-main.280",
pages = "3576--3588",}
```
[3] **xTune** (ACL 2021, [paper](https://arxiv.org/pdf/2106.08226.pdf), [repo](https://github.com/bozheng-hit/xTune)) Consistency Regularization for Cross-Lingual Fine-Tuning.
```
@inproceedings{zheng-etal-2021-consistency,
title = "Consistency Regularization for Cross-Lingual Fine-Tuning",
author = {Bo Zheng, Li Dong, Shaohan Huang, Wenhui Wang, Zewen Chi, Saksham Singhal, Wanxiang Che, Ting Liu, Xia Song, Furu Wei},
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.264",
doi = "10.18653/v1/2021.acl-long.264",
pages = "3403--3417",
}
```
[4] **XLM-E** (arXiv 2021, [paper](https://arxiv.org/pdf/2106.16138.pdf)) XLM-E: Cross-lingual Language Model Pre-training via ELECTRA
```
@misc{chi2021xlme,
title={XLM-E: Cross-lingual Language Model Pre-training via ELECTRA},
author={Zewen Chi and Shaohan Huang and Li Dong and Shuming Ma and Saksham Singhal and Payal Bajaj and Xia Song and Furu Wei},
year={2021},
eprint={2106.16138},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
This project is licensed under the license found in the LICENSE file in the root directory of this source tree.
[Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct)
### Contact Information
For help or issues using InfoXLM, please submit a GitHub issue.
For other communications related to InfoXLM, please contact Li Dong (`[email protected]`), Furu Wei (`[email protected]`).
|