Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	| import argparse, os, sys, datetime, glob | |
| import numpy as np | |
| import time | |
| import torch | |
| import torchvision | |
| import pytorch_lightning as pl | |
| import json | |
| import pickle | |
| from packaging import version | |
| from omegaconf import OmegaConf | |
| from torch.utils.data import DataLoader, Dataset | |
| from functools import partial | |
| from PIL import Image | |
| import torch.distributed as dist | |
| from pytorch_lightning import seed_everything | |
| from pytorch_lightning.trainer import Trainer | |
| from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor | |
| from pytorch_lightning.utilities.distributed import rank_zero_only | |
| from pytorch_lightning.utilities import rank_zero_info | |
| from pytorch_lightning.plugins import DDPPlugin | |
| sys.path.append("./stable_diffusion") | |
| from ldm.data.base import Txt2ImgIterableBaseDataset | |
| from ldm.util import instantiate_from_config | |
| def get_parser(**parser_kwargs): | |
| def str2bool(v): | |
| if isinstance(v, bool): | |
| return v | |
| if v.lower() in ("yes", "true", "t", "y", "1"): | |
| return True | |
| elif v.lower() in ("no", "false", "f", "n", "0"): | |
| return False | |
| else: | |
| raise argparse.ArgumentTypeError("Boolean value expected.") | |
| parser = argparse.ArgumentParser(**parser_kwargs) | |
| parser.add_argument( | |
| "-n", | |
| "--name", | |
| type=str, | |
| const=True, | |
| default="", | |
| nargs="?", | |
| help="postfix for logdir", | |
| ) | |
| parser.add_argument( | |
| "-r", | |
| "--resume", | |
| type=str, | |
| const=True, | |
| default="", | |
| nargs="?", | |
| help="resume from logdir or checkpoint in logdir", | |
| ) | |
| parser.add_argument( | |
| "-b", | |
| "--base", | |
| nargs="*", | |
| metavar="base_config.yaml", | |
| help="paths to base configs. Loaded from left-to-right. " | |
| "Parameters can be overwritten or added with command-line options of the form `--key value`.", | |
| default=list(), | |
| ) | |
| parser.add_argument( | |
| "-t", | |
| "--train", | |
| type=str2bool, | |
| const=True, | |
| default=False, | |
| nargs="?", | |
| help="train", | |
| ) | |
| parser.add_argument( | |
| "--no-test", | |
| type=str2bool, | |
| const=True, | |
| default=False, | |
| nargs="?", | |
| help="disable test", | |
| ) | |
| parser.add_argument( | |
| "-p", | |
| "--project", | |
| help="name of new or path to existing project" | |
| ) | |
| parser.add_argument( | |
| "-d", | |
| "--debug", | |
| type=str2bool, | |
| nargs="?", | |
| const=True, | |
| default=False, | |
| help="enable post-mortem debugging", | |
| ) | |
| parser.add_argument( | |
| "-s", | |
| "--seed", | |
| type=int, | |
| default=23, | |
| help="seed for seed_everything", | |
| ) | |
| parser.add_argument( | |
| "-f", | |
| "--postfix", | |
| type=str, | |
| default="", | |
| help="post-postfix for default name", | |
| ) | |
| parser.add_argument( | |
| "-l", | |
| "--logdir", | |
| type=str, | |
| default="logs", | |
| help="directory for logging dat shit", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="scale base-lr by ngpu * batch_size * n_accumulate", | |
| ) | |
| return parser | |
| def nondefault_trainer_args(opt): | |
| parser = argparse.ArgumentParser() | |
| parser = Trainer.add_argparse_args(parser) | |
| args = parser.parse_args([]) | |
| return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k)) | |
| class WrappedDataset(Dataset): | |
| """Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset""" | |
| def __init__(self, dataset): | |
| self.data = dataset | |
| def __len__(self): | |
| return len(self.data) | |
| def __getitem__(self, idx): | |
| return self.data[idx] | |
| def worker_init_fn(_): | |
| worker_info = torch.utils.data.get_worker_info() | |
| dataset = worker_info.dataset | |
| worker_id = worker_info.id | |
| if isinstance(dataset, Txt2ImgIterableBaseDataset): | |
| split_size = dataset.num_records // worker_info.num_workers | |
| # reset num_records to the true number to retain reliable length information | |
| dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size] | |
| current_id = np.random.choice(len(np.random.get_state()[1]), 1) | |
| return np.random.seed(np.random.get_state()[1][current_id] + worker_id) | |
| else: | |
| return np.random.seed(np.random.get_state()[1][0] + worker_id) | |
| class DataModuleFromConfig(pl.LightningDataModule): | |
| def __init__(self, batch_size, train=None, validation=None, test=None, predict=None, | |
| wrap=False, num_workers=None, shuffle_test_loader=False, use_worker_init_fn=False, | |
| shuffle_val_dataloader=False): | |
| super().__init__() | |
| self.batch_size = batch_size | |
| self.dataset_configs = dict() | |
| self.num_workers = num_workers if num_workers is not None else batch_size * 2 | |
| self.use_worker_init_fn = use_worker_init_fn | |
| if train is not None: | |
| self.dataset_configs["train"] = train | |
| self.train_dataloader = self._train_dataloader | |
| if validation is not None: | |
| self.dataset_configs["validation"] = validation | |
| self.val_dataloader = partial(self._val_dataloader, shuffle=shuffle_val_dataloader) | |
| if test is not None: | |
| self.dataset_configs["test"] = test | |
| self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader) | |
| if predict is not None: | |
| self.dataset_configs["predict"] = predict | |
| self.predict_dataloader = self._predict_dataloader | |
| self.wrap = wrap | |
| def prepare_data(self): | |
| for data_cfg in self.dataset_configs.values(): | |
| instantiate_from_config(data_cfg) | |
| def setup(self, stage=None): | |
| self.datasets = dict( | |
| (k, instantiate_from_config(self.dataset_configs[k])) | |
| for k in self.dataset_configs) | |
| if self.wrap: | |
| for k in self.datasets: | |
| self.datasets[k] = WrappedDataset(self.datasets[k]) | |
| def _train_dataloader(self): | |
| is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset) | |
| if is_iterable_dataset or self.use_worker_init_fn: | |
| init_fn = worker_init_fn | |
| else: | |
| init_fn = None | |
| return DataLoader(self.datasets["train"], batch_size=self.batch_size, | |
| num_workers=self.num_workers, shuffle=False if is_iterable_dataset else True, | |
| worker_init_fn=init_fn, persistent_workers=True) | |
| def _val_dataloader(self, shuffle=False): | |
| if isinstance(self.datasets['validation'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn: | |
| init_fn = worker_init_fn | |
| else: | |
| init_fn = None | |
| return DataLoader(self.datasets["validation"], | |
| batch_size=self.batch_size, | |
| num_workers=self.num_workers, | |
| worker_init_fn=init_fn, | |
| shuffle=shuffle, persistent_workers=True) | |
| def _test_dataloader(self, shuffle=False): | |
| is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset) | |
| if is_iterable_dataset or self.use_worker_init_fn: | |
| init_fn = worker_init_fn | |
| else: | |
| init_fn = None | |
| # do not shuffle dataloader for iterable dataset | |
| shuffle = shuffle and (not is_iterable_dataset) | |
| return DataLoader(self.datasets["test"], batch_size=self.batch_size, | |
| num_workers=self.num_workers, worker_init_fn=init_fn, shuffle=shuffle, persistent_workers=True) | |
| def _predict_dataloader(self, shuffle=False): | |
| if isinstance(self.datasets['predict'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn: | |
| init_fn = worker_init_fn | |
| else: | |
| init_fn = None | |
| return DataLoader(self.datasets["predict"], batch_size=self.batch_size, | |
| num_workers=self.num_workers, worker_init_fn=init_fn, persistent_workers=True) | |
| class SetupCallback(Callback): | |
| def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config): | |
| super().__init__() | |
| self.resume = resume | |
| self.now = now | |
| self.logdir = logdir | |
| self.ckptdir = ckptdir | |
| self.cfgdir = cfgdir | |
| self.config = config | |
| self.lightning_config = lightning_config | |
| def on_keyboard_interrupt(self, trainer, pl_module): | |
| if trainer.global_rank == 0: | |
| print("Summoning checkpoint.") | |
| ckpt_path = os.path.join(self.ckptdir, "last.ckpt") | |
| trainer.save_checkpoint(ckpt_path) | |
| def on_pretrain_routine_start(self, trainer, pl_module): | |
| if trainer.global_rank == 0: | |
| # Create logdirs and save configs | |
| # os.makedirs(self.logdir, exist_ok=True) | |
| # os.makedirs(self.ckptdir, exist_ok=True) | |
| # os.makedirs(self.cfgdir, exist_ok=True) | |
| if "callbacks" in self.lightning_config: | |
| if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']: | |
| os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True) | |
| print("Project config") | |
| print(OmegaConf.to_yaml(self.config)) | |
| OmegaConf.save(self.config, | |
| os.path.join(self.cfgdir, "{}-project.yaml".format(self.now))) | |
| print("Lightning config") | |
| print(OmegaConf.to_yaml(self.lightning_config)) | |
| OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}), | |
| os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now))) | |
| def get_world_size(): | |
| if not dist.is_available(): | |
| return 1 | |
| if not dist.is_initialized(): | |
| return 1 | |
| return dist.get_world_size() | |
| def all_gather(data): | |
| """ | |
| Run all_gather on arbitrary picklable data (not necessarily tensors) | |
| Args: | |
| data: any picklable object | |
| Returns: | |
| list[data]: list of data gathered from each rank | |
| """ | |
| world_size = get_world_size() | |
| if world_size == 1: | |
| return [data] | |
| # serialized to a Tensor | |
| origin_size = None | |
| if not isinstance(data, torch.Tensor): | |
| buffer = pickle.dumps(data) | |
| storage = torch.ByteStorage.from_buffer(buffer) | |
| tensor = torch.ByteTensor(storage).to("cuda") | |
| else: | |
| origin_size = data.size() | |
| tensor = data.reshape(-1) | |
| tensor_type = tensor.dtype | |
| # obtain Tensor size of each rank | |
| local_size = torch.LongTensor([tensor.numel()]).to("cuda") | |
| size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)] | |
| dist.all_gather(size_list, local_size) | |
| size_list = [int(size.item()) for size in size_list] | |
| max_size = max(size_list) | |
| # receiving Tensor from all ranks | |
| # we pad the tensor because torch all_gather does not support | |
| # gathering tensors of different shapes | |
| tensor_list = [] | |
| for _ in size_list: | |
| tensor_list.append(torch.FloatTensor(size=(max_size,)).cuda().to(tensor_type)) | |
| if local_size != max_size: | |
| padding = torch.FloatTensor(size=(max_size - local_size,)).cuda().to(tensor_type) | |
| tensor = torch.cat((tensor, padding), dim=0) | |
| dist.all_gather(tensor_list, tensor) | |
| data_list = [] | |
| for size, tensor in zip(size_list, tensor_list): | |
| if origin_size is None: | |
| buffer = tensor.cpu().numpy().tobytes()[:size] | |
| data_list.append(pickle.loads(buffer)) | |
| else: | |
| buffer = tensor[:size] | |
| data_list.append(buffer) | |
| if origin_size is not None: | |
| new_shape = [-1] + list(origin_size[1:]) | |
| resized_list = [] | |
| for data in data_list: | |
| # suppose the difference of tensor size exist in first dimension | |
| data = data.reshape(new_shape) | |
| resized_list.append(data) | |
| return resized_list | |
| else: | |
| return data_list | |
| class ImageLogger(Callback): | |
| def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True, | |
| rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False, | |
| log_images_kwargs=None): | |
| super().__init__() | |
| self.rescale = rescale | |
| self.batch_freq = batch_frequency | |
| self.max_images = max_images | |
| self.logger_log_images = { | |
| pl.loggers.TestTubeLogger: self._testtube, | |
| } | |
| self.log_steps = [2 ** n for n in range(6, int(np.log2(self.batch_freq)) + 1)] | |
| if not increase_log_steps: | |
| self.log_steps = [self.batch_freq] | |
| self.clamp = clamp | |
| self.disabled = disabled | |
| self.log_on_batch_idx = log_on_batch_idx | |
| self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {} | |
| self.log_first_step = log_first_step | |
| def _testtube(self, pl_module, images, batch_idx, split): | |
| for k in images: | |
| grid = torchvision.utils.make_grid(images[k]) | |
| grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
| tag = f"{split}/{k}" | |
| pl_module.logger.experiment.add_image( | |
| tag, grid, | |
| global_step=pl_module.global_step) | |
| def log_local(self, save_dir, split, images, prompts, | |
| global_step, current_epoch, batch_idx): | |
| root = os.path.join(save_dir, "images", split) | |
| names = {"reals": "before", "inputs": "after", "reconstruction": "before-vq", "samples": "after-gen"} | |
| # print(root) | |
| for k in images: | |
| grid = torchvision.utils.make_grid(images[k], nrow=8) | |
| if self.rescale: | |
| grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
| grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
| grid = grid.numpy() | |
| grid = (grid * 255).astype(np.uint8) | |
| filename = "gs-{:06}_e-{:06}_b-{:06}_{}.png".format( | |
| global_step, | |
| current_epoch, | |
| batch_idx, | |
| names[k]) | |
| path = os.path.join(root, filename) | |
| os.makedirs(os.path.split(path)[0], exist_ok=True) | |
| # print(path) | |
| Image.fromarray(grid).save(path) | |
| filename = "gs-{:06}_e-{:06}_b-{:06}_prompt.json".format( | |
| global_step, | |
| current_epoch, | |
| batch_idx) | |
| path = os.path.join(root, filename) | |
| with open(path, "w") as f: | |
| for p in prompts: | |
| f.write(f"{json.dumps(p)}\n") | |
| def log_img(self, pl_module, batch, batch_idx, split="train"): | |
| check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step | |
| if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0 | |
| hasattr(pl_module, "log_images") and | |
| callable(pl_module.log_images) and | |
| self.max_images > 0) or (split == "val" and batch_idx == 0): | |
| logger = type(pl_module.logger) | |
| is_train = pl_module.training | |
| if is_train: | |
| pl_module.eval() | |
| with torch.no_grad(): | |
| images = pl_module.log_images(batch, split=split, **self.log_images_kwargs) | |
| prompts = batch["edit"]["c_crossattn"][:self.max_images] | |
| prompts = [p for ps in all_gather(prompts) for p in ps] | |
| for k in images: | |
| N = min(images[k].shape[0], self.max_images) | |
| images[k] = images[k][:N] | |
| images[k] = torch.cat(all_gather(images[k][:N])) | |
| if isinstance(images[k], torch.Tensor): | |
| images[k] = images[k].detach().cpu() | |
| if self.clamp: | |
| images[k] = torch.clamp(images[k], -1., 1.) | |
| self.log_local(pl_module.logger.save_dir, split, images, prompts, | |
| pl_module.global_step, pl_module.current_epoch, batch_idx) | |
| logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None) | |
| logger_log_images(pl_module, images, pl_module.global_step, split) | |
| if is_train: | |
| pl_module.train() | |
| def check_frequency(self, check_idx): | |
| if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and ( | |
| check_idx > 0 or self.log_first_step): | |
| if len(self.log_steps) > 0: | |
| self.log_steps.pop(0) | |
| return True | |
| return False | |
| def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): | |
| if not self.disabled and (pl_module.global_step > 0 or self.log_first_step): | |
| self.log_img(pl_module, batch, batch_idx, split="train") | |
| def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): | |
| if not self.disabled and pl_module.global_step > 0: | |
| self.log_img(pl_module, batch, batch_idx, split="val") | |
| if hasattr(pl_module, 'calibrate_grad_norm'): | |
| if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0: | |
| self.log_gradients(trainer, pl_module, batch_idx=batch_idx) | |
| class CUDACallback(Callback): | |
| # see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py | |
| def on_train_epoch_start(self, trainer, pl_module): | |
| # Reset the memory use counter | |
| torch.cuda.reset_peak_memory_stats(trainer.root_gpu) | |
| torch.cuda.synchronize(trainer.root_gpu) | |
| self.start_time = time.time() | |
| def on_train_epoch_end(self, trainer, pl_module, outputs): | |
| torch.cuda.synchronize(trainer.root_gpu) | |
| max_memory = torch.cuda.max_memory_allocated(trainer.root_gpu) / 2 ** 20 | |
| epoch_time = time.time() - self.start_time | |
| try: | |
| max_memory = trainer.training_type_plugin.reduce(max_memory) | |
| epoch_time = trainer.training_type_plugin.reduce(epoch_time) | |
| rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds") | |
| rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB") | |
| except AttributeError: | |
| pass | |
| if __name__ == "__main__": | |
| # custom parser to specify config files, train, test and debug mode, | |
| # postfix, resume. | |
| # `--key value` arguments are interpreted as arguments to the trainer. | |
| # `nested.key=value` arguments are interpreted as config parameters. | |
| # configs are merged from left-to-right followed by command line parameters. | |
| # model: | |
| # base_learning_rate: float | |
| # target: path to lightning module | |
| # params: | |
| # key: value | |
| # data: | |
| # target: main.DataModuleFromConfig | |
| # params: | |
| # batch_size: int | |
| # wrap: bool | |
| # train: | |
| # target: path to train dataset | |
| # params: | |
| # key: value | |
| # validation: | |
| # target: path to validation dataset | |
| # params: | |
| # key: value | |
| # test: | |
| # target: path to test dataset | |
| # params: | |
| # key: value | |
| # lightning: (optional, has sane defaults and can be specified on cmdline) | |
| # trainer: | |
| # additional arguments to trainer | |
| # logger: | |
| # logger to instantiate | |
| # modelcheckpoint: | |
| # modelcheckpoint to instantiate | |
| # callbacks: | |
| # callback1: | |
| # target: importpath | |
| # params: | |
| # key: value | |
| now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | |
| # add cwd for convenience and to make classes in this file available when | |
| # running as `python main.py` | |
| # (in particular `main.DataModuleFromConfig`) | |
| sys.path.append(os.getcwd()) | |
| parser = get_parser() | |
| parser = Trainer.add_argparse_args(parser) | |
| opt, unknown = parser.parse_known_args() | |
| assert opt.name | |
| cfg_fname = os.path.split(opt.base[0])[-1] | |
| cfg_name = os.path.splitext(cfg_fname)[0] | |
| nowname = f"{cfg_name}_{opt.name}" | |
| logdir = os.path.join(opt.logdir, nowname) | |
| ckpt = os.path.join(logdir, "checkpoints", "last.ckpt") | |
| resume = False | |
| if os.path.isfile(ckpt): | |
| opt.resume_from_checkpoint = ckpt | |
| base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml"))) | |
| opt.base = base_configs + opt.base | |
| _tmp = logdir.split("/") | |
| nowname = _tmp[-1] | |
| resume = True | |
| ckptdir = os.path.join(logdir, "checkpoints") | |
| cfgdir = os.path.join(logdir, "configs") | |
| os.makedirs(logdir, exist_ok=True) | |
| os.makedirs(ckptdir, exist_ok=True) | |
| os.makedirs(cfgdir, exist_ok=True) | |
| try: | |
| # init and save configs | |
| configs = [OmegaConf.load(cfg) for cfg in opt.base] | |
| cli = OmegaConf.from_dotlist(unknown) | |
| config = OmegaConf.merge(*configs, cli) | |
| if resume: | |
| # By default, when finetuning from Stable Diffusion, we load the EMA-only checkpoint to initialize all weights. | |
| # If resuming InstructPix2Pix from a finetuning checkpoint, instead load both EMA and non-EMA weights. | |
| config.model.params.load_ema = True | |
| lightning_config = config.pop("lightning", OmegaConf.create()) | |
| # merge trainer cli with config | |
| trainer_config = lightning_config.get("trainer", OmegaConf.create()) | |
| # default to ddp | |
| trainer_config["accelerator"] = "ddp" | |
| for k in nondefault_trainer_args(opt): | |
| trainer_config[k] = getattr(opt, k) | |
| if not "gpus" in trainer_config: | |
| del trainer_config["accelerator"] | |
| cpu = True | |
| else: | |
| gpuinfo = trainer_config["gpus"] | |
| print(f"Running on GPUs {gpuinfo}") | |
| cpu = False | |
| trainer_opt = argparse.Namespace(**trainer_config) | |
| lightning_config.trainer = trainer_config | |
| # model | |
| model = instantiate_from_config(config.model) | |
| # trainer and callbacks | |
| trainer_kwargs = dict() | |
| # default logger configs | |
| default_logger_cfgs = { | |
| "wandb": { | |
| "target": "pytorch_lightning.loggers.WandbLogger", | |
| "params": { | |
| "name": nowname, | |
| "save_dir": logdir, | |
| "id": nowname, | |
| } | |
| }, | |
| "testtube": { | |
| "target": "pytorch_lightning.loggers.TestTubeLogger", | |
| "params": { | |
| "name": "testtube", | |
| "save_dir": logdir, | |
| } | |
| }, | |
| } | |
| default_logger_cfg = default_logger_cfgs["wandb"] | |
| if "logger" in lightning_config: | |
| logger_cfg = lightning_config.logger | |
| else: | |
| logger_cfg = OmegaConf.create() | |
| logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg) | |
| trainer_kwargs["logger"] = instantiate_from_config(logger_cfg) | |
| # modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to | |
| # specify which metric is used to determine best models | |
| default_modelckpt_cfg = { | |
| "target": "pytorch_lightning.callbacks.ModelCheckpoint", | |
| "params": { | |
| "dirpath": ckptdir, | |
| "filename": "{epoch:06}", | |
| "verbose": True, | |
| "save_last": True, | |
| } | |
| } | |
| if "modelcheckpoint" in lightning_config: | |
| modelckpt_cfg = lightning_config.modelcheckpoint | |
| else: | |
| modelckpt_cfg = OmegaConf.create() | |
| modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg) | |
| print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}") | |
| if version.parse(pl.__version__) < version.parse('1.4.0'): | |
| trainer_kwargs["checkpoint_callback"] = instantiate_from_config(modelckpt_cfg) | |
| # add callback which sets up log directory | |
| default_callbacks_cfg = { | |
| "setup_callback": { | |
| "target": "main.SetupCallback", | |
| "params": { | |
| "resume": opt.resume, | |
| "now": now, | |
| "logdir": logdir, | |
| "ckptdir": ckptdir, | |
| "cfgdir": cfgdir, | |
| "config": config, | |
| "lightning_config": lightning_config, | |
| } | |
| }, | |
| "image_logger": { | |
| "target": "main.ImageLogger", | |
| "params": { | |
| "batch_frequency": 750, | |
| "max_images": 4, | |
| "clamp": True | |
| } | |
| }, | |
| "learning_rate_logger": { | |
| "target": "main.LearningRateMonitor", | |
| "params": { | |
| "logging_interval": "step", | |
| # "log_momentum": True | |
| } | |
| }, | |
| "cuda_callback": { | |
| "target": "main.CUDACallback" | |
| }, | |
| } | |
| if version.parse(pl.__version__) >= version.parse('1.4.0'): | |
| default_callbacks_cfg.update({'checkpoint_callback': modelckpt_cfg}) | |
| if "callbacks" in lightning_config: | |
| callbacks_cfg = lightning_config.callbacks | |
| else: | |
| callbacks_cfg = OmegaConf.create() | |
| print( | |
| 'Caution: Saving checkpoints every n train steps without deleting. This might require some free space.') | |
| default_metrics_over_trainsteps_ckpt_dict = { | |
| 'metrics_over_trainsteps_checkpoint': { | |
| "target": 'pytorch_lightning.callbacks.ModelCheckpoint', | |
| 'params': { | |
| "dirpath": os.path.join(ckptdir, 'trainstep_checkpoints'), | |
| "filename": "{epoch:06}-{step:09}", | |
| "verbose": True, | |
| 'save_top_k': -1, | |
| 'every_n_train_steps': 1000, | |
| 'save_weights_only': True | |
| } | |
| } | |
| } | |
| default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict) | |
| callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg) | |
| if 'ignore_keys_callback' in callbacks_cfg and hasattr(trainer_opt, 'resume_from_checkpoint'): | |
| callbacks_cfg.ignore_keys_callback.params['ckpt_path'] = trainer_opt.resume_from_checkpoint | |
| elif 'ignore_keys_callback' in callbacks_cfg: | |
| del callbacks_cfg['ignore_keys_callback'] | |
| trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg] | |
| trainer = Trainer.from_argparse_args(trainer_opt, plugins=DDPPlugin(find_unused_parameters=False), **trainer_kwargs) | |
| trainer.logdir = logdir ### | |
| # data | |
| data = instantiate_from_config(config.data) | |
| # NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html | |
| # calling these ourselves should not be necessary but it is. | |
| # lightning still takes care of proper multiprocessing though | |
| data.prepare_data() | |
| data.setup() | |
| print("#### Data #####") | |
| for k in data.datasets: | |
| print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}") | |
| # configure learning rate | |
| bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate | |
| if not cpu: | |
| ngpu = len(lightning_config.trainer.gpus.strip(",").split(',')) | |
| else: | |
| ngpu = 1 | |
| if 'accumulate_grad_batches' in lightning_config.trainer: | |
| accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches | |
| else: | |
| accumulate_grad_batches = 1 | |
| print(f"accumulate_grad_batches = {accumulate_grad_batches}") | |
| lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches | |
| if opt.scale_lr: | |
| model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr | |
| print( | |
| "Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format( | |
| model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr)) | |
| else: | |
| model.learning_rate = base_lr | |
| print("++++ NOT USING LR SCALING ++++") | |
| print(f"Setting learning rate to {model.learning_rate:.2e}") | |
| # allow checkpointing via USR1 | |
| def melk(*args, **kwargs): | |
| # run all checkpoint hooks | |
| if trainer.global_rank == 0: | |
| print("Summoning checkpoint.") | |
| ckpt_path = os.path.join(ckptdir, "last.ckpt") | |
| trainer.save_checkpoint(ckpt_path) | |
| def divein(*args, **kwargs): | |
| if trainer.global_rank == 0: | |
| import pudb; | |
| pudb.set_trace() | |
| import signal | |
| signal.signal(signal.SIGUSR1, melk) | |
| signal.signal(signal.SIGUSR2, divein) | |
| # run | |
| if opt.train: | |
| try: | |
| trainer.fit(model, data) | |
| except Exception: | |
| melk() | |
| raise | |
| if not opt.no_test and not trainer.interrupted: | |
| trainer.test(model, data) | |
| except Exception: | |
| if opt.debug and trainer.global_rank == 0: | |
| try: | |
| import pudb as debugger | |
| except ImportError: | |
| import pdb as debugger | |
| debugger.post_mortem() | |
| raise | |
| finally: | |
| # move newly created debug project to debug_runs | |
| if opt.debug and not opt.resume and trainer.global_rank == 0: | |
| dst, name = os.path.split(logdir) | |
| dst = os.path.join(dst, "debug_runs", name) | |
| os.makedirs(os.path.split(dst)[0], exist_ok=True) | |
| os.rename(logdir, dst) | |
| if trainer.global_rank == 0: | |
| print(trainer.profiler.summary()) | |
 
			
