Spaces:
Runtime error
Runtime error
| from __future__ import annotations | |
| import gc | |
| import pathlib | |
| import sys | |
| import tempfile | |
| import gradio as gr | |
| import imageio | |
| import PIL.Image | |
| import torch | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from einops import rearrange | |
| from huggingface_hub import ModelCard | |
| sys.path.append("Tune-A-Video") | |
| from tuneavideo.models.unet import UNet3DConditionModel | |
| from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline | |
| class InferencePipeline: | |
| def __init__(self, hf_token: str | None = None): | |
| self.hf_token = hf_token | |
| self.pipe = None | |
| self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| self.model_id = None | |
| def clear(self) -> None: | |
| self.model_id = None | |
| del self.pipe | |
| self.pipe = None | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| def check_if_model_is_local(model_id: str) -> bool: | |
| return pathlib.Path(model_id).exists() | |
| def get_model_card(model_id: str, hf_token: str | None = None) -> ModelCard: | |
| if InferencePipeline.check_if_model_is_local(model_id): | |
| card_path = (pathlib.Path(model_id) / "README.md").as_posix() | |
| else: | |
| card_path = model_id | |
| return ModelCard.load(card_path, token=hf_token) | |
| def get_base_model_info(model_id: str, hf_token: str | None = None) -> str: | |
| card = InferencePipeline.get_model_card(model_id, hf_token) | |
| return card.data.base_model | |
| def load_pipe(self, model_id: str) -> None: | |
| if model_id == self.model_id: | |
| return | |
| base_model_id = self.get_base_model_info(model_id, self.hf_token) | |
| unet = UNet3DConditionModel.from_pretrained( | |
| model_id, subfolder="unet", torch_dtype=torch.float16, use_auth_token=self.hf_token | |
| ) | |
| pipe = TuneAVideoPipeline.from_pretrained( | |
| base_model_id, unet=unet, torch_dtype=torch.float16, use_auth_token=self.hf_token | |
| ) | |
| pipe = pipe.to(self.device) | |
| if is_xformers_available(): | |
| pipe.unet.enable_xformers_memory_efficient_attention() | |
| self.pipe = pipe | |
| self.model_id = model_id # type: ignore | |
| def run( | |
| self, | |
| model_id: str, | |
| prompt: str, | |
| video_length: int, | |
| fps: int, | |
| seed: int, | |
| n_steps: int, | |
| guidance_scale: float, | |
| ) -> PIL.Image.Image: | |
| if not torch.cuda.is_available(): | |
| raise gr.Error("CUDA is not available.") | |
| self.load_pipe(model_id) | |
| generator = torch.Generator(device=self.device).manual_seed(seed) | |
| out = self.pipe( | |
| prompt, | |
| video_length=video_length, | |
| width=512, | |
| height=512, | |
| num_inference_steps=n_steps, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| ) # type: ignore | |
| frames = rearrange(out.videos[0], "c t h w -> t h w c") | |
| frames = (frames * 255).to(torch.uint8).numpy() | |
| out_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) | |
| writer = imageio.get_writer(out_file.name, fps=fps) | |
| for frame in frames: | |
| writer.append_data(frame) | |
| writer.close() | |
| return out_file.name | |