|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
import typing as tp |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def _get_all_non_persistent_buffers_set(module: nn.Module, root: str = "") -> set: |
|
names: set = set() |
|
for (name, sub_module) in module.named_modules(): |
|
if name == '': |
|
buffer_names = module._non_persistent_buffers_set |
|
buffer_names = {f"{root}.{buff_name}" if len(root) > 0 else buff_name |
|
for buff_name in buffer_names} |
|
names.update(buffer_names) |
|
else: |
|
sub_name = f"{root}.{name}" if len(root) > 0 else name |
|
sub_buffer_names = _get_all_non_persistent_buffers_set(sub_module, sub_name) |
|
names.update(sub_buffer_names) |
|
return names |
|
|
|
|
|
def _get_named_tensors(module: nn.Module): |
|
non_persistent_buffers_set = _get_all_non_persistent_buffers_set(module) |
|
named_buffers = [(name, buffer) for (name, buffer) in module.named_buffers() |
|
if name not in non_persistent_buffers_set] |
|
named_parameters = list(module.named_parameters()) |
|
return named_parameters + named_buffers |
|
|
|
|
|
class ModuleDictEMA: |
|
"""Exponential Moving Average over a nn.ModuleDict. |
|
|
|
You can switch to the EMA weights temporarily. |
|
""" |
|
def __init__(self, module_dict: nn.ModuleDict, decay: float = 0.999, |
|
unbias: bool = True, device: tp.Union[torch.device, str] = 'cpu'): |
|
self.decay = decay |
|
self.module_dict = module_dict |
|
self.state: dict = defaultdict(dict) |
|
self.count = 0 |
|
self.device = device |
|
self.unbias = unbias |
|
self._init() |
|
|
|
def _init(self): |
|
for module_name, module in self.module_dict.items(): |
|
for key, val in _get_named_tensors(module): |
|
if not val.is_floating_point(): |
|
continue |
|
device = self.device or val.device |
|
if key not in self.state[module_name]: |
|
self.state[module_name][key] = val.detach().to(device, copy=True) |
|
|
|
def step(self): |
|
if self.unbias: |
|
self.count = self.count * self.decay + 1 |
|
w = 1 / self.count |
|
else: |
|
w = 1 - self.decay |
|
for module_name, module in self.module_dict.items(): |
|
for key, val in _get_named_tensors(module): |
|
if not val.is_floating_point(): |
|
continue |
|
device = self.device or val.device |
|
self.state[module_name][key].mul_(1 - w) |
|
self.state[module_name][key].add_(val.detach().to(device), alpha=w) |
|
|
|
def state_dict(self): |
|
return {'state': self.state, 'count': self.count} |
|
|
|
def load_state_dict(self, state): |
|
self.count = state['count'] |
|
for module_name, module in state['state'].items(): |
|
for key, val in module.items(): |
|
self.state[module_name][key].copy_(val) |
|
|