|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
from typing import TYPE_CHECKING, Any |
|
|
|
import torch |
|
import torch.optim |
|
import torch.distributed as dist |
|
|
|
if TYPE_CHECKING: |
|
from torch.optim.optimizer import _params_t |
|
else: |
|
_params_t = Any |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def to_real(x): |
|
if torch.is_complex(x): |
|
return x.real |
|
else: |
|
return x |
|
|
|
|
|
class DAdaptAdam(torch.optim.Optimizer): |
|
"""Adam with D-Adaptation automatic step-sizes. |
|
Leave LR set to 1 unless you encounter instability. |
|
|
|
Args: |
|
params (iterable): |
|
Iterable of parameters to optimize or dicts defining parameter groups. |
|
lr (float): |
|
Learning rate adjustment parameter. Increases or decreases the D-adapted learning rate. |
|
betas (tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
momentum (float): |
|
Momentum value in the range [0,1) (default: 0.9). |
|
eps (float): |
|
Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-8). |
|
weight_decay (float): |
|
Weight decay, i.e. a L2 penalty (default: 0). |
|
log_every (int): |
|
Log using print every k steps, default 0 (no logging). |
|
decouple (boolean): |
|
Use AdamW style decoupled weight decay |
|
d0 (float): |
|
Initial D estimate for D-adaptation (default 1e-6). Rarely needs changing. |
|
growth_rate (float): |
|
prevent the D estimate from growing faster than this multiplicative rate. |
|
Default is inf, for unrestricted. Values like 1.02 give a kind of learning |
|
rate warmup effect. |
|
fsdp_in_use (bool): |
|
If you're using sharded parameters, this should be set to True. The optimizer |
|
will attempt to auto-detect this, but if you're using an implementation other |
|
than PyTorch's builtin version, the auto-detection won't work. |
|
""" |
|
def __init__(self, params, lr=1.0, |
|
betas=(0.9, 0.999), |
|
eps=1e-8, |
|
weight_decay=0, |
|
log_every=0, |
|
decouple=True, |
|
d0=1e-6, |
|
growth_rate=float('inf')): |
|
if not 0.0 < d0: |
|
raise ValueError("Invalid d0 value: {}".format(d0)) |
|
if not 0.0 < lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 < eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
|
|
if decouple: |
|
logger.info("Using decoupled weight decay") |
|
|
|
from .fsdp import is_fsdp_used |
|
fsdp_in_use = is_fsdp_used() |
|
defaults = dict(lr=lr, betas=betas, eps=eps, |
|
weight_decay=weight_decay, |
|
d=d0, |
|
k=0, |
|
gsq_weighted=0.0, |
|
log_every=log_every, |
|
decouple=decouple, |
|
growth_rate=growth_rate, |
|
fsdp_in_use=fsdp_in_use) |
|
|
|
super().__init__(params, defaults) |
|
|
|
@property |
|
def supports_memory_efficient_fp16(self): |
|
return False |
|
|
|
@property |
|
def supports_flat_params(self): |
|
return True |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Args: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
g_sq = 0.0 |
|
sksq_weighted = 0.0 |
|
sk_l1 = 0.0 |
|
|
|
lr = max(group['lr'] for group in self.param_groups) |
|
|
|
group = self.param_groups[0] |
|
gsq_weighted = group['gsq_weighted'] |
|
d = group['d'] |
|
dlr = d*lr |
|
|
|
growth_rate = group['growth_rate'] |
|
decouple = group['decouple'] |
|
fsdp_in_use = group['fsdp_in_use'] |
|
log_every = group['log_every'] |
|
|
|
beta1, beta2 = group['betas'] |
|
|
|
for group in self.param_groups: |
|
group_lr = group['lr'] |
|
decay = group['weight_decay'] |
|
k = group['k'] |
|
eps = group['eps'] |
|
|
|
if group_lr not in [lr, 0.0]: |
|
raise RuntimeError("Setting different lr values in different parameter " |
|
"groups is only supported for values of 0") |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
if hasattr(p, "_fsdp_flattened"): |
|
fsdp_in_use = True |
|
grad = p.grad.data |
|
|
|
|
|
if decay != 0 and not decouple: |
|
grad.add_(p.data, alpha=decay) |
|
|
|
state = self.state[p] |
|
|
|
|
|
if 'step' not in state: |
|
state['step'] = 0 |
|
state['s'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() |
|
|
|
state['exp_avg'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() |
|
|
|
state['exp_avg_sq'] = torch.zeros_like( |
|
to_real(p.data), memory_format=torch.preserve_format).detach() |
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
|
|
grad_grad = to_real(grad * grad.conj()) |
|
|
|
|
|
if group_lr > 0: |
|
exp_avg.mul_(beta1).add_(grad, alpha=dlr*(1-beta1)) |
|
exp_avg_sq.mul_(beta2).add_(grad_grad, alpha=1-beta2) |
|
|
|
denom = exp_avg_sq.sqrt().add_(eps) |
|
|
|
g_sq += grad_grad.div_(denom).sum().item() |
|
|
|
s = state['s'] |
|
s.mul_(beta2).add_(grad, alpha=dlr*(1-beta2)) |
|
sksq_weighted += to_real(s * s.conj()).div_(denom).sum().item() |
|
sk_l1 += s.abs().sum().item() |
|
|
|
|
|
|
|
gsq_weighted = beta2*gsq_weighted + g_sq*(dlr**2)*(1-beta2) |
|
d_hat = d |
|
|
|
|
|
|
|
if sk_l1 == 0: |
|
return loss |
|
|
|
if lr > 0.0: |
|
if fsdp_in_use: |
|
dist_tensor = torch.zeros(3, device='cuda') |
|
dist_tensor[0] = sksq_weighted |
|
dist_tensor[1] = gsq_weighted |
|
dist_tensor[2] = sk_l1 |
|
dist.all_reduce(dist_tensor, op=dist.ReduceOp.SUM) |
|
global_sksq_weighted = dist_tensor[0] |
|
global_gsq_weighted = dist_tensor[1] |
|
global_sk_l1 = dist_tensor[2] |
|
else: |
|
global_sksq_weighted = sksq_weighted |
|
global_gsq_weighted = gsq_weighted |
|
global_sk_l1 = sk_l1 |
|
|
|
d_hat = (global_sksq_weighted/(1-beta2) - global_gsq_weighted)/global_sk_l1 |
|
d = max(d, min(d_hat, d*growth_rate)) |
|
|
|
if log_every > 0 and k % log_every == 0: |
|
logger.info( |
|
f"(k={k}) dlr: {dlr:1.1e} d_hat: {d_hat:1.1e}, d: {d:1.8}. " |
|
f"sksq_weighted={global_sksq_weighted:1.1e} gsq_weighted={global_gsq_weighted:1.1e} " |
|
f"sk_l1={global_sk_l1:1.1e}{' (FSDP)' if fsdp_in_use else ''}") |
|
|
|
for group in self.param_groups: |
|
group['gsq_weighted'] = gsq_weighted |
|
group['d'] = d |
|
|
|
group_lr = group['lr'] |
|
decay = group['weight_decay'] |
|
k = group['k'] |
|
eps = group['eps'] |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
|
|
state = self.state[p] |
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
|
|
state['step'] += 1 |
|
|
|
denom = exp_avg_sq.sqrt().add_(eps) |
|
denom = denom.type(p.type()) |
|
|
|
|
|
if decay != 0 and decouple and group_lr > 0: |
|
p.data.add_(p.data, alpha=-decay * dlr) |
|
|
|
|
|
p.data.addcdiv_(exp_avg, denom, value=-1) |
|
|
|
group['k'] = k + 1 |
|
|
|
return loss |
|
|