|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Evaluation with objective metrics for the pretrained MusicGen models. |
|
This grid takes signature from the training grid and runs evaluation-only stage. |
|
|
|
When running the grid for the first time, please use: |
|
REGEN=1 dora grid musicgen.musicgen_pretrained_32khz_eval |
|
and re-use the REGEN=1 option when the grid is changed to force regenerating it. |
|
|
|
Note that you need the proper metrics external libraries setup to use all |
|
the objective metrics activated in this grid. Refer to the README for more information. |
|
""" |
|
|
|
import os |
|
|
|
from ._explorers import GenerationEvalExplorer |
|
from ...environment import AudioCraftEnvironment |
|
from ... import train |
|
|
|
|
|
def eval(launcher, batch_size: int = 32, eval_melody: bool = False): |
|
opts = { |
|
'dset': 'audio/musiccaps_32khz', |
|
'solver/musicgen/evaluation': 'objective_eval', |
|
'execute_only': 'evaluate', |
|
'+dataset.evaluate.batch_size': batch_size, |
|
'+metrics.fad.tf.batch_size': 16, |
|
} |
|
|
|
chroma_opts = { |
|
'dset': 'internal/music_400k_32khz', |
|
'dataset.evaluate.segment_duration': 30, |
|
'dataset.evaluate.num_samples': 1000, |
|
'evaluate.metrics.chroma_cosine': True, |
|
'evaluate.metrics.fad': False, |
|
'evaluate.metrics.kld': False, |
|
'evaluate.metrics.text_consistency': False, |
|
} |
|
|
|
metrics_opts = { |
|
'metrics.fad.tf.bin': '/data/home/jadecopet/local/usr/opt/google-research' |
|
} |
|
opt1 = {'generate.lm.use_sampling': True, 'generate.lm.top_k': 250, 'generate.lm.top_p': 0.} |
|
opt2 = {'transformer_lm.two_step_cfg': True} |
|
|
|
sub = launcher.bind(opts) |
|
sub.bind_(metrics_opts) |
|
|
|
|
|
sub(opt1, opt2) |
|
|
|
if eval_melody: |
|
|
|
sub(opt1, opt2, chroma_opts) |
|
|
|
|
|
@GenerationEvalExplorer |
|
def explorer(launcher): |
|
partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global']) |
|
launcher.slurm_(gpus=4, partition=partitions) |
|
|
|
if 'REGEN' not in os.environ: |
|
folder = train.main.dora.dir / 'grids' / __name__.split('.', 2)[-1] |
|
with launcher.job_array(): |
|
for sig in folder.iterdir(): |
|
if not sig.is_symlink(): |
|
continue |
|
xp = train.main.get_xp_from_sig(sig.name) |
|
launcher(xp.argv) |
|
return |
|
|
|
with launcher.job_array(): |
|
musicgen_base = launcher.bind(solver="musicgen/musicgen_base_32khz") |
|
musicgen_base.bind_({'autocast': False, 'fsdp.use': True}) |
|
|
|
|
|
musicgen_base_small = musicgen_base.bind({'continue_from': '//pretrained/facebook/musicgen-small'}) |
|
eval(musicgen_base_small, batch_size=128) |
|
|
|
musicgen_base_medium = musicgen_base.bind({'continue_from': '//pretrained/facebook/musicgen-medium'}) |
|
musicgen_base_medium.bind_({'model/lm/model_scale': 'medium'}) |
|
eval(musicgen_base_medium, batch_size=128) |
|
|
|
musicgen_base_large = musicgen_base.bind({'continue_from': '//pretrained/facebook/musicgen-large'}) |
|
musicgen_base_large.bind_({'model/lm/model_scale': 'large'}) |
|
eval(musicgen_base_large, batch_size=128) |
|
|
|
|
|
musicgen_melody = launcher.bind(solver="musicgen/musicgen_melody_32khz") |
|
musicgen_melody.bind_({'autocast': False, 'fsdp.use': True}) |
|
|
|
musicgen_melody_medium = musicgen_melody.bind({'continue_from': '//pretrained/facebook/musicgen-melody'}) |
|
musicgen_melody_medium.bind_({'model/lm/model_scale': 'medium'}) |
|
eval(musicgen_melody_medium, batch_size=128, eval_melody=True) |
|
|