File size: 1,811 Bytes
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import random

import torch

from audiocraft.losses import (
    MelSpectrogramL1Loss,
    MultiScaleMelSpectrogramLoss,
    MRSTFTLoss,
    SISNR,
    STFTLoss,
)


def test_mel_l1_loss():
    N, C, T = 2, 2, random.randrange(1000, 100_000)
    t1 = torch.randn(N, C, T)
    t2 = torch.randn(N, C, T)

    mel_l1 = MelSpectrogramL1Loss(sample_rate=22_050)
    loss = mel_l1(t1, t2)
    loss_same = mel_l1(t1, t1)

    assert isinstance(loss, torch.Tensor)
    assert isinstance(loss_same, torch.Tensor)
    assert loss_same.item() == 0.0


def test_msspec_loss():
    N, C, T = 2, 2, random.randrange(1000, 100_000)
    t1 = torch.randn(N, C, T)
    t2 = torch.randn(N, C, T)

    msspec = MultiScaleMelSpectrogramLoss(sample_rate=22_050)
    loss = msspec(t1, t2)
    loss_same = msspec(t1, t1)

    assert isinstance(loss, torch.Tensor)
    assert isinstance(loss_same, torch.Tensor)
    assert loss_same.item() == 0.0


def test_mrstft_loss():
    N, C, T = 2, 2, random.randrange(1000, 100_000)
    t1 = torch.randn(N, C, T)
    t2 = torch.randn(N, C, T)

    mrstft = MRSTFTLoss()
    loss = mrstft(t1, t2)

    assert isinstance(loss, torch.Tensor)


def test_sisnr_loss():
    N, C, T = 2, 2, random.randrange(1000, 100_000)
    t1 = torch.randn(N, C, T)
    t2 = torch.randn(N, C, T)

    sisnr = SISNR()
    loss = sisnr(t1, t2)

    assert isinstance(loss, torch.Tensor)


def test_stft_loss():
    N, C, T = 2, 2, random.randrange(1000, 100_000)
    t1 = torch.randn(N, C, T)
    t2 = torch.randn(N, C, T)

    mrstft = STFTLoss()
    loss = mrstft(t1, t2)

    assert isinstance(loss, torch.Tensor)