File size: 94,544 Bytes
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205d938
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afe9ef0
29792f4
 
 
 
 
7733eae
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7733eae
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205d938
 
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d0de39
29792f4
 
 
 
2d0de39
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b85e59
29792f4
 
61b8187
29792f4
3add6cd
29792f4
61b8187
29792f4
 
61b8187
9c60d10
91f4b0a
61b8187
 
91f4b0a
 
69efc45
91f4b0a
32e711b
91f4b0a
29792f4
91f4b0a
 
 
 
29792f4
a1f5812
91f4b0a
 
 
 
 
a1f5812
58ea49f
a1f5812
 
 
 
 
 
91f4b0a
 
 
 
 
 
 
 
 
a1f5812
 
91f4b0a
a1f5812
91f4b0a
 
 
 
 
 
61b8187
91f4b0a
 
 
 
 
 
 
 
 
 
95d43bc
91f4b0a
 
 
 
 
 
 
 
 
95d43bc
91f4b0a
 
 
 
 
5d73e38
 
 
 
b798412
 
 
 
 
91f4b0a
 
 
 
 
 
 
 
61b8187
99da3ae
3b44621
 
32e711b
91f4b0a
 
 
 
 
 
 
 
247aae6
29792f4
 
 
205d938
29792f4
 
205d938
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205d938
 
 
 
29792f4
 
205d938
29792f4
 
205d938
29792f4
 
 
 
 
 
 
 
 
 
 
205d938
29792f4
 
 
205d938
 
29792f4
 
205d938
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205d938
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33925e3
3b44621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d49b3c2
33925e3
3b44621
 
 
 
 
 
 
 
 
 
 
 
 
ba7c36a
3b44621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba7c36a
16d3a28
d49b3c2
3b44621
 
 
 
194b3cd
eb1fd26
 
 
 
beb8f0b
194b3cd
3b44621
 
95d43bc
5d73e38
3b44621
 
194b3cd
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4df0b03
577bb7a
468adb8
29792f4
a54eeee
 
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a54eeee
 
29792f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
# also released under the MIT license.

import argparse
from concurrent.futures import ProcessPoolExecutor
import os
from pathlib import Path
import subprocess as sp
from tempfile import NamedTemporaryFile
import time
import warnings
import glob
import re
from PIL import Image
from pydub import AudioSegment
from datetime import datetime

import json
import shutil
import taglib
import torch
import torchaudio
import gradio as gr
import numpy as np
import typing as tp

from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import AudioGen, MusicGen, MultiBandDiffusion
from audiocraft.utils import ui
import random, string

version = "2.0.0a"

theme = gr.themes.Base(
    primary_hue="lime",
    secondary_hue="lime",
    neutral_hue="neutral",
).set(
    button_primary_background_fill_hover='*primary_500',
    button_primary_background_fill_hover_dark='*primary_500',
    button_secondary_background_fill_hover='*primary_500',
    button_secondary_background_fill_hover_dark='*primary_500'
)

MODEL = None  # Last used model
MODELS = None
UNLOAD_MODEL = False
MOVE_TO_CPU = False
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
print(IS_BATCHED)
MAX_BATCH_SIZE = 12
BATCHED_DURATION = 15
INTERRUPTING = False
MBD = None
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call


def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))


def resize_video(input_path, output_path, target_width, target_height):
    ffmpeg_cmd = [
        'ffmpeg',
        '-y',
        '-i', input_path,
        '-vf', f'scale={target_width}:{target_height}',
        '-c:a', 'copy',
        output_path
    ]
    sp.run(ffmpeg_cmd)


def _call_nostderr(*args, **kwargs):
    # Avoid ffmpeg vomiting on the logs.
    kwargs['stderr'] = sp.DEVNULL
    kwargs['stdout'] = sp.DEVNULL
    _old_call(*args, **kwargs)


sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(4)
pool.__enter__()


def interrupt():
    global INTERRUPTING
    INTERRUPTING = True


class FileCleaner:
    def __init__(self, file_lifetime: float = 3600):
        self.file_lifetime = file_lifetime
        self.files = []

    def add(self, path: tp.Union[str, Path]):
        self._cleanup()
        self.files.append((time.time(), Path(path)))

    def _cleanup(self):
        now = time.time()
        for time_added, path in list(self.files):
            if now - time_added > self.file_lifetime:
                if path.exists():
                    path.unlink()
                self.files.pop(0)
            else:
                break


file_cleaner = FileCleaner()


def make_waveform(*args, **kwargs):
    # Further remove some warnings.
    be = time.time()
    with warnings.catch_warnings():
        warnings.simplefilter('ignore')
        height = kwargs.pop('height')
        width = kwargs.pop('width')
        if height < 256:
            height = 256
        if width < 256:
            width = 256
        waveform_video = gr.make_waveform(*args, **kwargs)
        out = f"{generate_random_string(12)}.mp4"
        image = kwargs.get('bg_image', None)
        if image is None:
            resize_video(waveform_video, out, 900, 300)
        else:
            resize_video(waveform_video, out, width, height)
        print("Make a video took", time.time() - be)
        return out


def load_model(version='GrandaddyShmax/musicgen-melody', custom_model=None, base_model='GrandaddyShmax/musicgen-medium', gen_type="music"):
    global MODEL, MODELS
    print("Loading model", version)
    if MODELS is None:
        if version == 'GrandaddyShmax/musicgen-custom':
            MODEL = MusicGen.get_pretrained(base_model)
            file_path = os.path.abspath("models/" + str(custom_model) + ".pt")
            MODEL.lm.load_state_dict(torch.load(file_path))
        else:
            if gen_type == "music":
                MODEL = MusicGen.get_pretrained(version)
            elif gen_type == "audio":
                MODEL = AudioGen.get_pretrained(version)

        return

    else:
        t1 = time.monotonic()
        if MODEL is not None:
            MODEL.to('cpu') # move to cache
            print("Previous model moved to CPU in %.2fs" % (time.monotonic() - t1))
            t1 = time.monotonic()
        if version != 'GrandaddyShmax/musicgen-custom' and MODELS.get(version) is None:
            print("Loading model %s from disk" % version)
            if gen_type == "music":
                result = MusicGen.get_pretrained(version)
            elif gen_type == "audio":
                result = AudioGen.get_pretrained(version)
            MODELS[version] = result
            print("Model loaded in %.2fs" % (time.monotonic() - t1))
            MODEL = result
            return
        result = MODELS[version].to('cuda')
        print("Cached model loaded in %.2fs" % (time.monotonic() - t1))
        MODEL = result

def get_audio_info(audio_path):
    if audio_path is not None:
        if audio_path.name.endswith(".wav") or audio_path.name.endswith(".mp4") or audio_path.name.endswith(".json"):
            if not audio_path.name.endswith(".json"):
                with taglib.File(audio_path.name, save_on_exit=False) as song:
                    if 'COMMENT' not in song.tags:
                        return "No tags found. Either the file is not generated by MusicGen+ V1.2.7 and higher or the tags are corrupted. (Discord removes metadata from mp4 and wav files, so you can't use them)"
                    json_string = song.tags['COMMENT'][0]
                    data = json.loads(json_string)
                    
                    global_prompt = str("\nGlobal Prompt: " + (data['global_prompt'] if data['global_prompt'] != "" else "none")) if 'global_prompt' in data else ""
                    bpm = str("\nBPM: " + data['bpm']) if 'bpm' in data else ""
                    key = str("\nKey: " + data['key']) if 'key' in data else ""
                    scale = str("\nScale: " + data['scale']) if 'scale' in data else ""
                    prompts = str("\nPrompts: " + (data['texts'] if data['texts'] != "['']" else "none")) if 'texts' in data else ""
                    duration = str("\nDuration: " + data['duration']) if 'duration' in data else ""
                    overlap = str("\nOverlap: " + data['overlap']) if 'overlap' in data else ""
                    seed = str("\nSeed: " + data['seed']) if 'seed' in data else ""
                    audio_mode = str("\nAudio Mode: " + data['audio_mode']) if 'audio_mode' in data else ""
                    input_length = str("\nInput Length: " + data['input_length']) if 'input_length' in data else ""
                    channel = str("\nChannel: " + data['channel']) if 'channel' in data else ""
                    sr_select = str("\nSample Rate: " + data['sr_select']) if 'sr_select' in data else ""
                    gen_type = str(data['generator'] + "gen-") if 'generator' in data else ""
                    model = str("\nModel: " + gen_type + data['model']) if 'model' in data else ""
                    custom_model = str("\nCustom Model: " + data['custom_model']) if 'custom_model' in data else ""
                    base_model = str("\nBase Model: " + data['base_model']) if 'base_model' in data else ""
                    decoder = str("\nDecoder: " + data['decoder']) if 'decoder' in data else ""
                    topk = str("\nTopk: " + data['topk']) if 'topk' in data else ""
                    topp = str("\nTopp: " + data['topp']) if 'topp' in data else ""
                    temperature = str("\nTemperature: " + data['temperature']) if 'temperature' in data else ""
                    cfg_coef = str("\nClassifier Free Guidance: " + data['cfg_coef']) if 'cfg_coef' in data else ""
                    version = str("Version: " + data['version']) if 'version' in data else "Version: Unknown"
                    info = str(version + global_prompt + bpm + key + scale + prompts + duration + overlap + seed + audio_mode + input_length + channel + sr_select + model + custom_model + base_model + decoder + topk + topp + temperature + cfg_coef)
                    if info == "":
                        return "No tags found. Either the file is not generated by V1.2.7 and higher or the tags are corrupted. (Discord removes metadata from mp4 and wav files, so you can't use them)"
                    return info
            else:
                with open(audio_path.name) as json_file:
                    data = json.load(json_file)
                    #if 'global_prompt' not in data:
                        #return "No tags found. Either the file is not generated by V1.2.8a and higher or the tags are corrupted."
                    global_prompt = str("\nGlobal Prompt: " + (data['global_prompt'] if data['global_prompt'] != "" else "none")) if 'global_prompt' in data else ""
                    bpm = str("\nBPM: " + data['bpm']) if 'bpm' in data else ""
                    key = str("\nKey: " + data['key']) if 'key' in data else ""
                    scale = str("\nScale: " + data['scale']) if 'scale' in data else ""
                    prompts = str("\nPrompts: " + (data['texts'] if data['texts'] != "['']" else "none")) if 'texts' in data else ""
                    duration = str("\nDuration: " + data['duration']) if 'duration' in data else ""
                    overlap = str("\nOverlap: " + data['overlap']) if 'overlap' in data else ""
                    seed = str("\nSeed: " + data['seed']) if 'seed' in data else ""
                    audio_mode = str("\nAudio Mode: " + data['audio_mode']) if 'audio_mode' in data else ""
                    input_length = str("\nInput Length: " + data['input_length']) if 'input_length' in data else ""
                    channel = str("\nChannel: " + data['channel']) if 'channel' in data else ""
                    sr_select = str("\nSample Rate: " + data['sr_select']) if 'sr_select' in data else ""
                    gen_type = str(data['generator'] + "gen-") if 'generator' in data else ""
                    model = str("\nModel: " + gen_type + data['model']) if 'model' in data else ""
                    custom_model = str("\nCustom Model: " + data['custom_model']) if 'custom_model' in data else ""
                    base_model = str("\nBase Model: " + data['base_model']) if 'base_model' in data else ""
                    decoder = str("\nDecoder: " + data['decoder']) if 'decoder' in data else ""
                    topk = str("\nTopk: " + data['topk']) if 'topk' in data else ""
                    topp = str("\nTopp: " + data['topp']) if 'topp' in data else ""
                    temperature = str("\nTemperature: " + data['temperature']) if 'temperature' in data else ""
                    cfg_coef = str("\nClassifier Free Guidance: " + data['cfg_coef']) if 'cfg_coef' in data else ""
                    version = str("Version: " + data['version']) if 'version' in data else "Version: Unknown"
                    info = str(version + global_prompt + bpm + key + scale + prompts + duration + overlap + seed + audio_mode + input_length + channel + sr_select + model + custom_model + base_model + decoder + topk + topp + temperature + cfg_coef)
                    if info == "":
                        return "No tags found. Either the file is not generated by V1.2.7 and higher or the tags are corrupted."
                    return info
        else:
            return "Only .wav ,.mp4 and .json files are supported"
    else:
        return None


def info_to_params(audio_path):
    if audio_path is not None:
        if audio_path.name.endswith(".wav") or audio_path.name.endswith(".mp4") or audio_path.name.endswith(".json"):
            if not audio_path.name.endswith(".json"):
                with taglib.File(audio_path.name, save_on_exit=False) as song:
                    if 'COMMENT' not in song.tags:
                        return "Default", False, "", 120, "C", "Major", "large", None, "medium", 1, "", "", "", "", "", "", "", "", "", "", 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, "sample", 10, 250, 0, 1.0, 5.0, -1, 12, "stereo", "48000"
                    json_string = song.tags['COMMENT'][0]
                    data = json.loads(json_string)
                    struc_prompt = (False if data['bpm'] == "none" else True) if 'bpm' in data else False
                    global_prompt = data['global_prompt'] if 'global_prompt' in data else ""
                    bpm = (120 if data['bpm'] == "none" else int(data['bpm'])) if 'bpm' in data else 120
                    key = ("C" if data['key'] == "none" else data['key']) if 'key' in data else "C"
                    scale = ("Major" if data['scale'] == "none" else data['scale']) if 'scale' in data else "Major"
                    model = data['model'] if 'model' in data else "large"
                    custom_model = (data['custom_model'] if data['custom_model'] in get_available_models() else None) if 'custom_model' in data else None
                    base_model = data['base_model'] if 'base_model' in data else "medium"
                    decoder = data['decoder'] if 'decoder' in data else "Default"
                    if 'texts' not in data:
                        unique_prompts = 1
                        text = ["", "", "", "", "", "", "", "", "", ""]
                        repeat = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
                    else:
                        s = data['texts']
                        s = re.findall(r"'(.*?)'", s)
                        text = []
                        repeat = []
                        i = 0
                        for elem in s:
                            if elem.strip():
                                if i == 0 or elem != s[i-1]:
                                    text.append(elem)
                                    repeat.append(1)
                                else:
                                    repeat[-1] += 1
                            i += 1
                        text.extend([""] * (10 - len(text)))
                        repeat.extend([1] * (10 - len(repeat)))
                        unique_prompts = len([t for t in text if t])
                    audio_mode = ("sample" if data['audio_mode'] == "none" else data['audio_mode']) if 'audio_mode' in data else "sample"
                    duration = int(data['duration']) if 'duration' in data else 10
                    topk = float(data['topk']) if 'topk' in data else 250
                    topp = float(data['topp']) if 'topp' in data else 0
                    temperature = float(data['temperature']) if 'temperature' in data else 1.0
                    cfg_coef = float(data['cfg_coef']) if 'cfg_coef' in data else 5.0
                    seed = int(data['seed']) if 'seed' in data else -1
                    overlap = int(data['overlap']) if 'overlap' in data else 12
                    channel = data['channel'] if 'channel' in data else "stereo"
                    sr_select = data['sr_select'] if 'sr_select' in data else "48000"
                    return decoder, struc_prompt, global_prompt, bpm, key, scale, model, custom_model, base_model, unique_prompts, text[0], text[1], text[2], text[3], text[4], text[5], text[6], text[7], text[8], text[9], repeat[0], repeat[1], repeat[2], repeat[3], repeat[4], repeat[5], repeat[6], repeat[7], repeat[8], repeat[9], audio_mode, duration, topk, topp, temperature, cfg_coef, seed, overlap, channel, sr_select
            else:
                with open(audio_path.name) as json_file:
                    data = json.load(json_file)
                    struc_prompt = (False if data['bpm'] == "none" else True) if 'bpm' in data else False
                    global_prompt = data['global_prompt'] if 'global_prompt' in data else ""
                    bpm = (120 if data['bpm'] == "none" else int(data['bpm'])) if 'bpm' in data else 120
                    key = ("C" if data['key'] == "none" else data['key']) if 'key' in data else "C"
                    scale = ("Major" if data['scale'] == "none" else data['scale']) if 'scale' in data else "Major"
                    model = data['model'] if 'model' in data else "large"
                    custom_model = (data['custom_model'] if data['custom_model'] in get_available_models() else None) if 'custom_model' in data else None
                    base_model = data['base_model'] if 'base_model' in data else "medium"
                    decoder = data['decoder'] if 'decoder' in data else "Default"
                    if 'texts' not in data:
                        unique_prompts = 1
                        text = ["", "", "", "", "", "", "", "", "", ""]
                        repeat = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
                    else:
                        s = data['texts']
                        s = re.findall(r"'(.*?)'", s)
                        text = []
                        repeat = []
                        i = 0
                        for elem in s:
                            if elem.strip():
                                if i == 0 or elem != s[i-1]:
                                    text.append(elem)
                                    repeat.append(1)
                                else:
                                    repeat[-1] += 1
                            i += 1
                        text.extend([""] * (10 - len(text)))
                        repeat.extend([1] * (10 - len(repeat)))
                        unique_prompts = len([t for t in text if t])
                    audio_mode = ("sample" if data['audio_mode'] == "none" else data['audio_mode']) if 'audio_mode' in data else "sample"
                    duration = int(data['duration']) if 'duration' in data else 10
                    topk = float(data['topk']) if 'topk' in data else 250
                    topp = float(data['topp']) if 'topp' in data else 0
                    temperature = float(data['temperature']) if 'temperature' in data else 1.0
                    cfg_coef = float(data['cfg_coef']) if 'cfg_coef' in data else 5.0
                    seed = int(data['seed']) if 'seed' in data else -1
                    overlap = int(data['overlap']) if 'overlap' in data else 12
                    channel = data['channel'] if 'channel' in data else "stereo"
                    sr_select = data['sr_select'] if 'sr_select' in data else "48000"
                    return decoder, struc_prompt, global_prompt, bpm, key, scale, model, custom_model, base_model, unique_prompts, text[0], text[1], text[2], text[3], text[4], text[5], text[6], text[7], text[8], text[9], repeat[0], repeat[1], repeat[2], repeat[3], repeat[4], repeat[5], repeat[6], repeat[7], repeat[8], repeat[9], audio_mode, duration, topk, topp, temperature, cfg_coef, seed, overlap, channel, sr_select
        else:
            return "Default", False, "", 120, "C", "Major", "large", None, "medium", 1, "", "", "", "", "", "", "", "", "", "", 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, "sample", 10, 250, 0, 1.0, 5.0, -1, 12, "stereo", "48000"
    else:
        return "Default", False, "", 120, "C", "Major", "large", None, "medium", 1, "", "", "", "", "", "", "", "", "", "", 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, "sample", 10, 250, 0, 1.0, 5.0, -1, 12, "stereo", "48000"


def info_to_params_a(audio_path):
    if audio_path is not None:
        if audio_path.name.endswith(".wav") or audio_path.name.endswith(".mp4") or audio_path.name.endswith(".json"):
            if not audio_path.name.endswith(".json"):
                with taglib.File(audio_path.name, save_on_exit=False) as song:
                    if 'COMMENT' not in song.tags:
                        return "Default", False, "", 1, "", "", "", "", "", "", "", "", "", "", 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 250, 0, 1.0, 5.0, -1, 12, "stereo", "48000"
                    json_string = song.tags['COMMENT'][0]
                    data = json.loads(json_string)
                    struc_prompt = (False if data['global_prompt'] == "" else True) if 'global_prompt' in data else False
                    global_prompt = data['global_prompt'] if 'global_prompt' in data else ""
                    decoder = data['decoder'] if 'decoder' in data else "Default"
                    if 'texts' not in data:
                        unique_prompts = 1
                        text = ["", "", "", "", "", "", "", "", "", ""]
                        repeat = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
                    else:
                        s = data['texts']
                        s = re.findall(r"'(.*?)'", s)
                        text = []
                        repeat = []
                        i = 0
                        for elem in s:
                            if elem.strip():
                                if i == 0 or elem != s[i-1]:
                                    text.append(elem)
                                    repeat.append(1)
                                else:
                                    repeat[-1] += 1
                            i += 1
                        text.extend([""] * (10 - len(text)))
                        repeat.extend([1] * (10 - len(repeat)))
                        unique_prompts = len([t for t in text if t])
                    duration = int(data['duration']) if 'duration' in data else 10
                    topk = float(data['topk']) if 'topk' in data else 250
                    topp = float(data['topp']) if 'topp' in data else 0
                    temperature = float(data['temperature']) if 'temperature' in data else 1.0
                    cfg_coef = float(data['cfg_coef']) if 'cfg_coef' in data else 5.0
                    seed = int(data['seed']) if 'seed' in data else -1
                    overlap = int(data['overlap']) if 'overlap' in data else 12
                    channel = data['channel'] if 'channel' in data else "stereo"
                    sr_select = data['sr_select'] if 'sr_select' in data else "48000"
                    return decoder, struc_prompt, global_prompt, unique_prompts, text[0], text[1], text[2], text[3], text[4], text[5], text[6], text[7], text[8], text[9], repeat[0], repeat[1], repeat[2], repeat[3], repeat[4], repeat[5], repeat[6], repeat[7], repeat[8], repeat[9], duration, topk, topp, temperature, cfg_coef, seed, overlap, channel, sr_select
            else:
                with open(audio_path.name) as json_file:
                    data = json.load(json_file)
                    struc_prompt = (False if data['global_prompt'] == "" else True) if 'global_prompt' in data else False
                    global_prompt = data['global_prompt'] if 'global_prompt' in data else ""
                    decoder = data['decoder'] if 'decoder' in data else "Default"
                    if 'texts' not in data:
                        unique_prompts = 1
                        text = ["", "", "", "", "", "", "", "", "", ""]
                        repeat = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
                    else:
                        s = data['texts']
                        s = re.findall(r"'(.*?)'", s)
                        text = []
                        repeat = []
                        i = 0
                        for elem in s:
                            if elem.strip():
                                if i == 0 or elem != s[i-1]:
                                    text.append(elem)
                                    repeat.append(1)
                                else:
                                    repeat[-1] += 1
                            i += 1
                        text.extend([""] * (10 - len(text)))
                        repeat.extend([1] * (10 - len(repeat)))
                        unique_prompts = len([t for t in text if t])
                    duration = int(data['duration']) if 'duration' in data else 10
                    topk = float(data['topk']) if 'topk' in data else 250
                    topp = float(data['topp']) if 'topp' in data else 0
                    temperature = float(data['temperature']) if 'temperature' in data else 1.0
                    cfg_coef = float(data['cfg_coef']) if 'cfg_coef' in data else 5.0
                    seed = int(data['seed']) if 'seed' in data else -1
                    overlap = int(data['overlap']) if 'overlap' in data else 12
                    channel = data['channel'] if 'channel' in data else "stereo"
                    sr_select = data['sr_select'] if 'sr_select' in data else "48000"
                    return decoder, struc_prompt, global_prompt, unique_prompts, text[0], text[1], text[2], text[3], text[4], text[5], text[6], text[7], text[8], text[9], repeat[0], repeat[1], repeat[2], repeat[3], repeat[4], repeat[5], repeat[6], repeat[7], repeat[8], repeat[9], duration, topk, topp, temperature, cfg_coef, seed, overlap, channel, sr_select
                    
        else:
            return "Default", False, "", 1, "", "", "", "", "", "", "", "", "", "", 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 250, 0, 1.0, 5.0, -1, 12, "stereo", "48000"
    else:
        return "Default", False, "", 1, "", "", "", "", "", "", "", "", "", "", 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 250, 0, 1.0, 5.0, -1, 12, "stereo", "48000"


def make_pseudo_stereo (filename, sr_select, pan, delay):
    if pan:
        temp = AudioSegment.from_wav(filename)
        if sr_select != "32000":
            temp = temp.set_frame_rate(int(sr_select))
        left = temp.pan(-0.5) - 5
        right = temp.pan(0.6) - 5
        temp = left.overlay(right, position=5)
        temp.export(filename, format="wav")
    if delay:     
        waveform, sample_rate = torchaudio.load(filename) # load mono WAV file
        delay_seconds = 0.01 # set delay 10ms
        delay_samples = int(delay_seconds * sample_rate) # Calculating delay value in number of samples
        stereo_waveform = torch.stack([waveform[0], torch.cat((torch.zeros(delay_samples), waveform[0][:-delay_samples]))]) # Generate a stereo file with original mono audio and delayed version
        torchaudio.save(filename, stereo_waveform, sample_rate)
    return


def normalize_audio(audio_data):
    audio_data = audio_data.astype(np.float32)
    max_value = np.max(np.abs(audio_data))
    audio_data /= max_value
    return audio_data


def load_diffusion():
    global MBD
    if MBD is None:
        print("loading MBD")
        MBD = MultiBandDiffusion.get_mbd_
        ()


def unload_diffusion():
    global MBD
    if MBD is not None:
        print("unloading MBD")
        MBD = None


def _do_predictions(gen_type, texts, melodies, sample, trim_start, trim_end, duration, image, height, width, background, bar1, bar2, channel, sr_select, progress=False, **gen_kwargs):
    if gen_type == "music":
        maximum_size = 29.5
    elif gen_type == "audio":
        maximum_size = 9.5
    cut_size = 0
    input_length = 0
    sampleP = None
    if sample is not None:
        globalSR, sampleM = sample[0], sample[1]
        sampleM = normalize_audio(sampleM)
        sampleM = torch.from_numpy(sampleM).t()
        if sampleM.dim() == 1:
            sampleM = sampleM.unsqueeze(0)
        sample_length = sampleM.shape[sampleM.dim() - 1] / globalSR
        if trim_start >= sample_length:
            trim_start = sample_length - 0.5
        if trim_end >= sample_length:
            trim_end = sample_length - 0.5
        if trim_start + trim_end >= sample_length:
            tmp = sample_length - 0.5
            trim_start = tmp / 2
            trim_end = tmp / 2
        sampleM = sampleM[..., int(globalSR * trim_start):int(globalSR * (sample_length - trim_end))]
        sample_length = sample_length - (trim_start + trim_end)
        if sample_length > maximum_size:
            cut_size = sample_length - maximum_size
            sampleP = sampleM[..., :int(globalSR * cut_size)]
            sampleM = sampleM[..., int(globalSR * cut_size):]
        if sample_length >= duration:
            duration = sample_length + 0.5
        input_length = sample_length
    global MODEL
    MODEL.set_generation_params(duration=(duration - cut_size), **gen_kwargs)
    print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies], [None if sample is None else (sample[0], sample[1].shape)])
    be = time.time()
    processed_melodies = []
    if gen_type == "music":
        target_sr = 32000
    elif gen_type == "audio":
        target_sr = 16000
    target_ac = 1

    for melody in melodies:
        if melody is None:
            processed_melodies.append(None)
        else:
            sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
            if melody.dim() == 1:
                melody = melody[None]
            melody = melody[..., :int(sr * duration)]
            melody = convert_audio(melody, sr, target_sr, target_ac)
            processed_melodies.append(melody)

    if sample is not None:
        if sampleP is None:
            if gen_type == "music":
                outputs = MODEL.generate_continuation(
                    prompt=sampleM,
                    prompt_sample_rate=globalSR,
                    descriptions=texts,
                    progress=progress,
                    return_tokens=USE_DIFFUSION
                )
            elif gen_type == "audio":
                outputs = MODEL.generate_continuation(
                    prompt=sampleM,
                    prompt_sample_rate=globalSR,
                    descriptions=texts,
                    progress=progress
                )
        else:
            if sampleP.dim() > 1:
                sampleP = convert_audio(sampleP, globalSR, target_sr, target_ac)
            sampleP = sampleP.to(MODEL.device).float().unsqueeze(0)
            if gen_type == "music":
                outputs = MODEL.generate_continuation(
                    prompt=sampleM,
                    prompt_sample_rate=globalSR,
                    descriptions=texts,
                    progress=progress,
                    return_tokens=USE_DIFFUSION
                )
            elif gen_type == "audio":
                outputs = MODEL.generate_continuation(
                    prompt=sampleM,
                    prompt_sample_rate=globalSR,
                    descriptions=texts,
                    progress=progress
                )
            outputs = torch.cat([sampleP, outputs], 2)
            
    elif any(m is not None for m in processed_melodies):
        if gen_type == "music":
            outputs = MODEL.generate_with_chroma(
                descriptions=texts,
                melody_wavs=processed_melodies,
                melody_sample_rate=target_sr,
                progress=progress,
                return_tokens=USE_DIFFUSION
            )
        elif gen_type == "audio":
            outputs = MODEL.generate_with_chroma(
                descriptions=texts,
                melody_wavs=processed_melodies,
                melody_sample_rate=target_sr,
                progress=progress
            )
    else:
        if gen_type == "music":
            outputs = MODEL.generate(texts, progress=progress, return_tokens=USE_DIFFUSION)
        elif gen_type == "audio":
            outputs = MODEL.generate(texts, progress=progress)

    if USE_DIFFUSION:
        print("outputs: " + str(outputs))
        outputs_diffusion = MBD.tokens_to_wav(outputs[1])
        outputs = torch.cat([outputs[0], outputs_diffusion], dim=0)
    outputs = outputs.detach().cpu().float()
    backups = outputs
    if channel == "stereo":
        outputs = convert_audio(outputs, target_sr, int(sr_select), 2)
    elif channel == "mono" and sr_select != "32000":
        outputs = convert_audio(outputs, target_sr, int(sr_select), 1)
    out_files = []
    out_audios = []
    out_backup = []
    for output in outputs:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name, output, (MODEL.sample_rate if channel == "stereo effect" else int(sr_select)), strategy="loudness",
                loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)

            if channel == "stereo effect":
                make_pseudo_stereo(file.name, sr_select, pan=True, delay=True);

            out_files.append(pool.submit(make_waveform, file.name, bg_image=image, bg_color=background, bars_color=(bar1, bar2), fg_alpha=1.0, bar_count=75, height=height, width=width))
            out_audios.append(file.name)
            file_cleaner.add(file.name)
            print(f'wav: {file.name}')
    for backup in backups:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name, backup, MODEL.sample_rate, strategy="loudness",
                loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
            out_backup.append(file.name)
            file_cleaner.add(file.name)
    res = [out_file.result() for out_file in out_files]
    res_audio = out_audios
    res_backup = out_backup
    for file in res:
        file_cleaner.add(file)
        print(f'video: {file}')
    print("batch finished", len(texts), time.time() - be)
    print("Tempfiles currently stored: ", len(file_cleaner.files))
    if MOVE_TO_CPU:
        MODEL.to('cpu')
    if UNLOAD_MODEL:
        MODEL = None
    torch.cuda.empty_cache()
    torch.cuda.ipc_collect()
    return res, res_audio, res_backup, input_length


def predict_batched(texts, melodies):
    max_text_length = 512
    texts = [text[:max_text_length] for text in texts]
    load_model('melody')
    res = _do_predictions(texts, melodies, BATCHED_DURATION)
    return res


def add_tags(filename, tags): 
    json_string = None

    data = {
        "global_prompt": tags[0],
        "bpm": tags[1],
        "key": tags[2],
        "scale": tags[3],
        "texts": tags[4],
        "duration": tags[5],
        "overlap": tags[6],
        "seed": tags[7],
        "audio_mode": tags[8],
        "input_length": tags[9],
        "channel": tags[10],
        "sr_select": tags[11],
        "model": tags[12],
        "custom_model": tags[13],
        "base_model": tags[14],
        "decoder": tags[15],
        "topk": tags[16],  
        "topp": tags[17],
        "temperature": tags[18],
        "cfg_coef": tags[19],
        "generator": tags[20],
        "version": version
        }

    json_string = json.dumps(data)

    if os.path.exists(filename):
        with taglib.File(filename, save_on_exit=True) as song:
            song.tags = {'COMMENT': json_string }

    json_file = open(tags[7] + '.json', 'w')
    json_file.write(json_string)
    json_file.close()

    return json_file.name;


def save_outputs(mp4, wav_tmp, tags, gen_type):
    # mp4: .mp4 file name in root running folder of app.py    
    # wav_tmp: temporary wav file located in %TEMP% folder
    # seed - used seed 
    # exanple BgnJtr4Pn1AJ.mp4,  C:\Users\Alex\AppData\Local\Temp\tmp4ermrebs.wav,  195123182343465
    # procedure read generated .mp4 and wav files, rename it by using seed as name, 
    # and will store it to ./output/today_date/wav and  ./output/today_date/mp4 folders. 
    # if file with same seed number already exist its make postfix in name like seed(n) 
    # where is n - consiqunce number 1-2-3-4 and so on
    # then we store generated mp4 and wav into destination folders.     

    current_date = datetime.now().strftime("%Y%m%d")
    wav_directory = os.path.join(os.getcwd(), 'output', current_date, gen_type,'wav')
    mp4_directory = os.path.join(os.getcwd(), 'output', current_date, gen_type,'mp4')
    json_directory = os.path.join(os.getcwd(), 'output', current_date, gen_type,'json')
    os.makedirs(wav_directory, exist_ok=True)
    os.makedirs(mp4_directory, exist_ok=True)
    os.makedirs(json_directory, exist_ok=True)

    filename = str(tags[7]) + '.wav'
    target = os.path.join(wav_directory, filename)
    counter = 1
    while os.path.exists(target):
        filename = str(tags[7]) + f'({counter})' + '.wav'
        target = os.path.join(wav_directory, filename)
        counter += 1

    shutil.copyfile(wav_tmp, target); # make copy of original file
    json_file = add_tags(target, tags);
    
    wav_target=target;
    target=target.replace('wav', 'mp4');
    mp4_target=target;
    
    mp4=r'./' +mp4;    
    shutil.copyfile(mp4, target); # make copy of original file  
    _ = add_tags(target, tags);

    target=target.replace('mp4', 'json'); # change the extension to json
    json_target=target; # store the json target

    with open(target, 'w') as f: # open a writable file object
        shutil.copyfile(json_file, target); # make copy of original file
    
    os.remove(json_file)

    return wav_target, mp4_target, json_target;


def clear_cash():
    # delete all temporary files genegated my system
    current_date = datetime.now().date()
    current_directory = os.getcwd()
    files = glob.glob(os.path.join(current_directory, '*.mp4'))
    for file in files:
        creation_date = datetime.fromtimestamp(os.path.getctime(file)).date()
        if creation_date == current_date:
            os.remove(file)

    temp_directory = os.environ.get('TEMP')
    files = glob.glob(os.path.join(temp_directory, 'tmp*.mp4'))
    for file in files:
        creation_date = datetime.fromtimestamp(os.path.getctime(file)).date()
        if creation_date == current_date:
            os.remove(file)
   
    files = glob.glob(os.path.join(temp_directory, 'tmp*.wav'))
    for file in files:
        creation_date = datetime.fromtimestamp(os.path.getctime(file)).date()
        if creation_date == current_date:
            os.remove(file)

    files = glob.glob(os.path.join(temp_directory, 'tmp*.png'))
    for file in files:
        creation_date = datetime.fromtimestamp(os.path.getctime(file)).date()
        if creation_date == current_date:
            os.remove(file)
    return


def s2t(seconds, seconds2):
    # convert seconds to time format
    # seconds - time in seconds
    # return time in format 00:00
    m, s = divmod(seconds, 60)
    m2, s2 = divmod(seconds2, 60)
    if seconds != 0 and seconds < seconds2:
        s = s + 1
    return ("%02d:%02d - %02d:%02d" % (m, s, m2, s2))


def calc_time(gen_type, s, duration, overlap, d0, d1, d2, d3, d4, d5, d6, d7, d8, d9):
    # calculate the time of generation
    # overlap - overlap in seconds
    # d0-d9 - drag
    # return time in seconds
    d_amount = [int(d0), int(d1), int(d2), int(d3), int(d4), int(d5), int(d6), int(d7), int(d8), int(d9)]
    calc = []
    tracks = []
    time = 0
    s = s - 1
    max_time = duration
    max_limit = 0
    if gen_type == "music":
        max_limit = 30
    elif gen_type == "audio":
        max_limit = 10
    track_add = max_limit - overlap
    tracks.append(max_limit + ((d_amount[0] - 1) * track_add))
    for i in range(1, 10):
        tracks.append(d_amount[i] * track_add)
    
    if tracks[0] >= max_time or s == 0:
        calc.append(s2t(time, max_time))
        time = max_time
    else:
        calc.append(s2t(time, tracks[0]))
        time = tracks[0]

    for i in range(1, 10):
        if time + tracks[i] >= max_time or i == s:
            calc.append(s2t(time, max_time))
            time = max_time
        else:
            calc.append(s2t(time, time + tracks[i]))
            time = time + tracks[i]
    
    return calc[0], calc[1], calc[2], calc[3], calc[4], calc[5], calc[6], calc[7], calc[8], calc[9]


def predict_full(gen_type, model, decoder, custom_model, base_model, prompt_amount, struc_prompt, bpm, key, scale, global_prompt, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, audio, mode, trim_start, trim_end, duration, topk, topp, temperature, cfg_coef, seed, overlap, image, height, width, background, bar1, bar2, channel, sr_select, progress=gr.Progress()):
    global INTERRUPTING
    global USE_DIFFUSION
    INTERRUPTING = False

    if gen_type == "audio":
        custom_model = None
        base_model = "medium"

    if temperature < 0:
        raise gr.Error("Temperature must be >= 0.")
    if topk < 0:
        raise gr.Error("Topk must be non-negative.")
    if topp < 0:
        raise gr.Error("Topp must be non-negative.")

    if trim_start < 0:
        trim_start = 0
    if trim_end < 0:
        trim_end = 0

    topk = int(topk)

    if decoder == "MultiBand_Diffusion":
        USE_DIFFUSION = True
        load_diffusion()
    else:
        USE_DIFFUSION = False
        unload_diffusion()

    if gen_type == "music":
        model_shrt = model
        model = "GrandaddyShmax/-" + model
    elif gen_type == "audio":
        model_shrt = model
        model = "GrandaddyShmax/audiogen-" + model
    base_model_shrt = base_model
    base_model = "GrandaddyShmax/-" + base_model

    if MODEL is None or MODEL.name != (model):
        load_model(model, custom_model, base_model, gen_type)
    else:
        if MOVE_TO_CPU:
            MODEL.to('cuda')

    if seed < 0:
        seed = random.randint(0, 0xffff_ffff_ffff)
    torch.manual_seed(seed)

    def _progress(generated, to_generate):
        progress((min(generated, to_generate), to_generate))
        if INTERRUPTING:
            raise gr.Error("Interrupted.")
    MODEL.set_custom_progress_callback(_progress)

    audio_mode = "none"
    melody = None
    sample = None
    if audio:
      audio_mode = mode
      if mode == "sample":
          sample = audio
      elif mode == "melody":
          melody = audio

    base_model = "none" if model != "custom" else base_model
    custom_model = "none" if model != "custom" else custom_model

    text_cat = [p0, p1, p2, p3, p4, p5, p6, p7, p8, p9]
    drag_cat = [d0, d1, d2, d3, d4, d5, d6, d7, d8, d9]
    texts = []
    raw_texts = []
    ind = 0
    ind2 = 0
    while ind < prompt_amount:
        for ind2 in range(int(drag_cat[ind])):
            if not struc_prompt:
                texts.append(text_cat[ind])
                global_prompt = "none"
                bpm = "none"
                key = "none"
                scale = "none"
                raw_texts.append(text_cat[ind])
            else:
                if gen_type == "music":
                    bpm_str = str(bpm) + " bpm"
                    key_str = ", " + str(key) + " " + str(scale)
                    global_str = (", " + str(global_prompt)) if str(global_prompt) != "" else ""
                elif gen_type == "audio":
                    bpm_str = ""
                    key_str = ""
                    global_str = (str(global_prompt)) if str(global_prompt) != "" else ""
                texts_str = (", " + str(text_cat[ind])) if str(text_cat[ind]) != "" else ""
                texts.append(bpm_str + key_str + global_str + texts_str)
                raw_texts.append(text_cat[ind])
        ind2 = 0
        ind = ind + 1

    outs, outs_audio, outs_backup, input_length = _do_predictions(
        gen_type, [texts], [melody], sample, trim_start, trim_end, duration, image, height, width, background, bar1, bar2, channel, sr_select, progress=True,
        top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef, extend_stride=MODEL.max_duration-overlap)
    tags = [str(global_prompt), str(bpm), str(key), str(scale), str(raw_texts), str(duration), str(overlap), str(seed), str(audio_mode), str(input_length), str(channel), str(sr_select), str(model_shrt), str(custom_model), str(base_model_shrt), str(decoder), str(topk), str(topp), str(temperature), str(cfg_coef), str(gen_type)]
    wav_target, mp4_target, json_target = save_outputs(outs[0], outs_audio[0], tags, gen_type);
    # Removes the temporary files.
    for out in outs:
        os.remove(out)
    for out in outs_audio:
        os.remove(out)

    return mp4_target, wav_target, outs_backup[0], [mp4_target, wav_target, json_target], seed


max_textboxes = 10


def get_available_models():
    return sorted([re.sub('.pt$', '', item.name) for item in list(Path('models/').glob('*')) if item.name.endswith('.pt')])


def toggle_audio_src(choice):
    if choice == "mic":
        return gr.update(source="microphone", value=None, label="Microphone")
    else:
        return gr.update(source="upload", value=None, label="File")


def ui_full(launch_kwargs):
    with gr.Blocks(title='TulipAI Soundscapes', theme=theme) as interface:
        gr.Markdown(
            """
            # TulipAI CulturaFX

            ### TulipAI's Audio Storytelling Toolkit

            TulipAI's CulturaFX  Description: An AI audio platform, that transforms user prompts into dynamic, cultural soundscapes and narratives. Designed for Gen Z content creators, gamers, sound designers, and podcast producers, our platform offers personalized, ethically sourced audio experiences.
            """
        )
        with gr.Tab("Generate"):
            gr.Markdown(
                    """
                    ### CulturaFX
                    Check the "Wiki" to learn how to take the most out of TulipAI CulturaFX Sound Effects Generation Tool.
                    """
                )
            with gr.Tab("Generate Sound Effects"):
                with gr.Row():
                    #with gr.Column():
                        with gr.Tab("Generation"):
                            with gr.Column():
                                textboxes_a = []
                                prompts_a = []
                                repeats_a = []
                                calcs_a = []
                                with gr.Row():
                                    text0_a = gr.Text(label="Global Prompt", interactive=True, scale=4)
                                    prompts_a.append(text0_a)
                                    drag0_a = gr.Number(label="Repeat", value=1, interactive=True, scale=1)
                                    repeats_a.append(drag0_a)
                                    calc0_a = gr.Text(interactive=False, value="00:00 - 00:00", scale=1, label="Time")
                                    calcs_a.append(calc0_a)
                            
                            with gr.Accordion("Structured Prompt (Optional)", open=False):
                                with gr.Row():
                                    struc_prompts_a = gr.Checkbox(label="Enable", value=False, interactive=True, container=False)
                                    #global_prompt_a = gr.Text(label="Global Prompt", interactive=True, scale=3)
                                    global_prompt_a = text0_a
                                with gr.Row():
                                    s_a = gr.Slider(1, max_textboxes, value=1, step=1, label="Prompts:", interactive=True, scale=2)
                                for i in range(max_textboxes):
                                    with gr.Row(visible=False) as t_a:
                                        text_a = gr.Text(label="Input Text", interactive=True, scale=3)
                                        repeat_a = gr.Number(label="Repeat", minimum=1, value=1, interactive=True, scale=1)
                                        calc_a = gr.Text(interactive=False, value="00:00 - 00:00", scale=1, label="Time")
                                    textboxes_a.append(t_a)
                                    prompts_a.append(text_a)
                                    repeats_a.append(repeat_a)
                                    calcs_a.append(calc_a)
                                
                                overlap_a = gr.Slider(minimum=1, maximum=9, value=2, step=1, label="Overlap", interactive=True)
                                to_calc_a = gr.Button("Calculate Timings", variant="secondary")

                            with gr.Row():
                                duration_a = gr.Slider(minimum=1, maximum=300, value=10, step=1, label="Duration", interactive=True)
                            with gr.Row():
                                seed_a = gr.Number(label="Seed", value=-1, scale=4, precision=0, interactive=True)
                                gr.Button('\U0001f3b2\ufe0f', scale=1).click(fn=lambda: -1, outputs=[seed_a], queue=False)
                                reuse_seed_a = gr.Button('\u267b\ufe0f', scale=1)
    '''
                        with gr.Tab("Audio"):
                            with gr.Row():
                                with gr.Column():
                                    input_type_a = gr.Radio(["file", "mic"], value="file", label="Input Type (optional)", interactive=True)
                                    mode_a = gr.Radio(["sample"], label="Input Audio Mode (optional)", value="sample", interactive=False, visible=False)
                                    with gr.Row():
                                        trim_start_a = gr.Number(label="Trim Start", value=0, interactive=True)
                                        trim_end_a = gr.Number(label="Trim End", value=0, interactive=True)
                                audio_a = gr.Audio(source="upload", type="numpy", label="Input Audio (optional)", interactive=True)
    
                        with gr.Tab("Customization"):
                            with gr.Row():
                                with gr.Column():
                                    background_a = gr.ColorPicker(value="#0f0f0f", label="background color", interactive=True, scale=0)
                                    bar1_a = gr.ColorPicker(value="#84cc16", label="bar color start", interactive=True, scale=0)
                                    bar2_a = gr.ColorPicker(value="#10b981", label="bar color end", interactive=True, scale=0)
                                with gr.Column():
                                    image_a = gr.Image(label="Background Image", type="filepath", interactive=True, scale=4)
                                    with gr.Row():
                                        height_a = gr.Number(label="Height", value=512, interactive=True)
                                        width_a = gr.Number(label="Width", value=768, interactive=True)
    
                        with gr.Tab("Settings"):
                            with gr.Row():
                                channel_a = gr.Radio(["mono", "stereo", "stereo effect"], label="Output Audio Channels", value="stereo", interactive=True, scale=1)
                                sr_select_a = gr.Dropdown(["11025", "16000", "22050", "24000", "32000", "44100", "48000"], label="Output Audio Sample Rate", value="48000", interactive=True)
                                with gr.Column():
                                    dropdown = gr.Dropdown(choices=get_available_models(), value=("No models found" if len(get_available_models()) < 1 else get_available_models()[0]), label='Custom Model (models folder)', elem_classes='slim-dropdown', interactive=True)
                                    ui.create_refresh_button(dropdown, lambda: None, lambda: {'choices': get_available_models()}, 'refresh-button')
                                    basemodel = gr.Radio(["small", "medium", "melody", "large"], label="Base Model", value="medium", interactive=True, scale=1)
                            with gr.Row():
                                        struc_prompts = gr.Checkbox(label="Enable", value=False, interactive=True, container=False)
                                        bpm = gr.Number(label="BPM", value=120, interactive=True, scale=1, precision=0)
                                        key = gr.Dropdown(["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "Bb", "B"], label="Key", value="C", interactive=True)
                                        scale = gr.Dropdown(["Major", "Minor"], label="Scale", value="Major", interactive=True)
                            with gr.Row():
                                model_a = gr.Radio(["medium"], label="Model", value="medium", interactive=False, visible=False)
                                decoder_a = gr.Radio(["Default"], label="Decoder", value="Default", interactive=False, visible=False)
                            with gr.Row():
                                topk_a = gr.Number(label="Top-k", value=250, interactive=True)
                                topp_a = gr.Number(label="Top-p", value=0, interactive=True)
                                temperature_a = gr.Number(label="Temperature", value=1.0, interactive=True)
                                cfg_coef_a = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
                '''
                with gr.Row():
                            submit_a = gr.Button("Generate", variant="primary")
                            _ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
                with gr.Row():
                        with gr.Tab("Output"):
                            output_a = gr.Video(label="Generated Audio", scale=0)
                            with gr.Row():
                                audio_only_a = gr.Audio(type="numpy", label="Audio Only", interactive=False)
                                backup_only_a = gr.Audio(type="numpy", label="Backup Audio", interactive=False, visible=False)
                                send_audio_a = gr.Button("Send to Input Audio")
                            seed_used_a = gr.Number(label='Seed used', value=-1, interactive=False)
                            download_a = gr.File(label="Generated Files", interactive=False)
        with gr.Tab("Wiki"):
                        gr.Markdown(
                            """
                            - **[Generate (button)]:**  
                            Generates the audio with the given settings and prompts.

                            - **[Interrupt (button)]:**  
                            Stops the audio generation as soon as it can, providing an incomplete output.

                            ---

                            ### Generation Tab:

                            #### Structure Prompts:

                            This feature helps reduce repetetive prompts by allowing you to set global prompts  
                            that will be used for all prompt segments.

                            - **[Structure Prompts (checkbox)]:**  
                            Enable/Disable the structure prompts feature.

                            - **[Global Prompt (text)]:**  
                            Here write the prompt that you wish to be used for all prompt segments.

                            #### Multi-Prompt: 
                            
                            This feature allows you to control the audio, adding variation to different time segments.  
                            You have up to 10 prompt segments. the first prompt will always be 10s long  
                            the other prompts will be [10s - overlap].  
                            for example if the overlap is 2s, each prompt segment will be 8s.

                            - **[Prompt Segments (number)]:**  
                            Amount of unique prompt to generate throughout the audio generation.

                            - **[Prompt/Input Text (prompt)]:**  
                            Here describe the audio you wish the model to generate.

                            - **[Repeat (number)]:**  
                            Write how many times this prompt will repeat (instead of wasting another prompt segment on the same prompt).

                            - **[Time (text)]:**  
                            The time of the prompt segment.

                            - **[Calculate Timings (button)]:**  
                            Calculates the timings of the prompt segments.

                            - **[Duration (number)]:**  
                            How long you want the generated audio to be (in seconds).

                            - **[Overlap (number)]:**  
                            How much each new segment will reference the previous segment (in seconds).  
                            For example, if you choose 2s: Each new segment after the first one will reference the previous segment 2s  
                            and will generate only 8s of new audio. The model can only process 10s of music.

                            - **[Seed (number)]:**  
                            Your generated audio id. If you wish to generate the exact same audio,  
                            place the exact seed with the exact prompts  
                            (This way you can also extend specific song that was generated short).

                            - **[Random Seed (button)]:**  
                            Gives "-1" as a seed, which counts as a random seed.

                            - **[Copy Previous Seed (button)]:**  
                            Copies the seed from the output seed (if you don't feel like doing it manualy).

                            ---

                            ### Audio Tab:

                            - **[Input Type (selection)]:**  
                            `File` mode allows you to upload an audio file to use as input  
                            `Mic` mode allows you to use your microphone as input

                            - **[Trim Start and Trim End (numbers)]:**  
                            `Trim Start` set how much you'd like to trim the input audio from the start  
                            `Trim End` same as the above but from the end

                            - **[Input Audio (audio file)]:**  
                            Input here the audio you wish to use.

                            ---

                            ### Customization Tab:

                            - **[Background Color (color)]:**  
                            Works only if you don't upload image. Color of the background of the waveform.

                            - **[Bar Color Start (color)]:**  
                            First color of the waveform bars.

                            - **[Bar Color End (color)]:**  
                            Second color of the waveform bars.

                            - **[Background Image (image)]:**  
                            Background image that you wish to be attached to the generated video along with the waveform.

                            - **[Height and Width (numbers)]:**  
                            Output video resolution, only works with image.  
                            (minimum height and width is 256).
                            
                            ---

                            ### Settings Tab:

                            - **[Output Audio Channels (selection)]:**  
                            With this you can select the amount of channels that you wish for your output audio.  
                            `mono` is a straightforward single channel audio  
                            `stereo` is a dual channel audio but it will sound more or less like mono  
                            `stereo effect` this one is also dual channel but uses tricks to simulate a stereo audio.

                            - **[Output Audio Sample Rate (dropdown)]:**  
                            The output audio sample rate, the model default is 32000.

                            - **[Top-k (number)]:**  
                            is a parameter used in text generation models, including music generation models. It determines the number of most likely next tokens to consider at each step of the generation process. The model ranks all possible tokens based on their predicted probabilities, and then selects the top-k tokens from the ranked list. The model then samples from this reduced set of tokens to determine the next token in the generated sequence. A smaller value of k results in a more focused and deterministic output, while a larger value of k allows for more diversity in the generated music.

                            - **[Top-p (number)]:**  
                            also known as nucleus sampling or probabilistic sampling, is another method used for token selection during text generation. Instead of specifying a fixed number like top-k, top-p considers the cumulative probability distribution of the ranked tokens. It selects the smallest possible set of tokens whose cumulative probability exceeds a certain threshold (usually denoted as p). The model then samples from this set to choose the next token. This approach ensures that the generated output maintains a balance between diversity and coherence, as it allows for a varying number of tokens to be considered based on their probabilities.
                            
                            - **[Temperature (number)]:**  
                            is a parameter that controls the randomness of the generated output. It is applied during the sampling process, where a higher temperature value results in more random and diverse outputs, while a lower temperature value leads to more deterministic and focused outputs. In the context of music generation, a higher temperature can introduce more variability and creativity into the generated music, but it may also lead to less coherent or structured compositions. On the other hand, a lower temperature can produce more repetitive and predictable music.

                            - **[Classifier Free Guidance (number)]:**  
                            refers to a technique used in some music generation models where a separate classifier network is trained to provide guidance or control over the generated music. This classifier is trained on labeled data to recognize specific musical characteristics or styles. During the generation process, the output of the generator model is evaluated by the classifier, and the generator is encouraged to produce music that aligns with the desired characteristics or style. This approach allows for more fine-grained control over the generated music, enabling users to specify certain attributes they want the model to capture.
                            """
                        )
        '''with gr.Tab("MusicGen"):
            gr.Markdown(
                    """
                    ### MusicGen
                    Check the "Wiki" to learn how to take the most out of TulipAI Soundscapes Music Generation Tool.
                    """
                )
            with gr.Tab("Generate Music"):
                with gr.Row():
                    with gr.Column():
                        with gr.Tab("Generation"):
                            with gr.Accordion("Structure Prompts", open=False):
                                with gr.Column():
                                    with gr.Row():
                                        struc_prompts = gr.Checkbox(label="Enable", value=False, interactive=True, container=False)
                                        bpm = gr.Number(label="BPM", value=120, interactive=True, scale=1, precision=0)
                                        key = gr.Dropdown(["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "Bb", "B"], label="Key", value="C", interactive=True)
                                        scale = gr.Dropdown(["Major", "Minor"], label="Scale", value="Major", interactive=True)
                                    with gr.Row():
                                        global_prompt = gr.Text(label="Global Prompt", interactive=True, scale=3)
                            with gr.Row():
                                s = gr.Slider(1, max_textboxes, value=1, step=1, label="Prompts:", interactive=True, scale=2)
                                #s_mode = gr.Radio(["segmentation", "batch"], value="segmentation", interactive=True, scale=1, label="Generation Mode")
                            with gr.Column():
                                textboxes = []
                                prompts = []
                                repeats = []
                                calcs = []
                                with gr.Row():
                                    text0 = gr.Text(label="Input Text", interactive=True, scale=4)
                                    prompts.append(text0)
                                    drag0 = gr.Number(label="Repeat", value=1, interactive=True, scale=1)
                                    repeats.append(drag0)
                                    calc0 = gr.Text(interactive=False, value="00:00 - 00:00", scale=1, label="Time")
                                    calcs.append(calc0)
                                for i in range(max_textboxes):
                                    with gr.Row(visible=False) as t:
                                        text = gr.Text(label="Input Text", interactive=True, scale=3)
                                        repeat = gr.Number(label="Repeat", minimum=1, value=1, interactive=True, scale=1)
                                        calc = gr.Text(interactive=False, value="00:00 - 00:00", scale=1, label="Time")
                                    textboxes.append(t)
                                    prompts.append(text)
                                    repeats.append(repeat)
                                    calcs.append(calc)
                                to_calc = gr.Button("Calculate Timings", variant="secondary")
                            with gr.Row():
                                duration = gr.Slider(minimum=1, maximum=300, value=10, step=1, label="Duration", interactive=True)
                            with gr.Row():
                                overlap = gr.Slider(minimum=1, maximum=29, value=12, step=1, label="Overlap", interactive=True)
                            with gr.Row():
                                seed = gr.Number(label="Seed", value=-1, scale=4, precision=0, interactive=True)
                                gr.Button('\U0001f3b2\ufe0f', scale=1).click(fn=lambda: -1, outputs=[seed], queue=False)
                                reuse_seed = gr.Button('\u267b\ufe0f', scale=1)
    
                        with gr.Tab("Audio"):
                            with gr.Row():
                                with gr.Column():
                                    input_type = gr.Radio(["file", "mic"], value="file", label="Input Type (optional)", interactive=True)
                                    mode = gr.Radio(["melody", "sample"], label="Input Audio Mode (optional)", value="sample", interactive=True)
                                    with gr.Row():
                                        trim_start = gr.Number(label="Trim Start", value=0, interactive=True)
                                        trim_end = gr.Number(label="Trim End", value=0, interactive=True)
                                audio = gr.Audio(source="upload", type="numpy", label="Input Audio (optional)", interactive=True)
    
                        with gr.Tab("Customization"):
                            with gr.Row():
                                with gr.Column():
                                    background = gr.ColorPicker(value="#0f0f0f", label="background color", interactive=True, scale=0)
                                    bar1 = gr.ColorPicker(value="#84cc16", label="bar color start", interactive=True, scale=0)
                                    bar2 = gr.ColorPicker(value="#10b981", label="bar color end", interactive=True, scale=0)
                                with gr.Column():
                                    image = gr.Image(label="Background Image", type="filepath", interactive=True, scale=4)
                                    with gr.Row():
                                        height = gr.Number(label="Height", value=512, interactive=True)
                                        width = gr.Number(label="Width", value=768, interactive=True)
    
                        with gr.Tab("Settings"):
                            with gr.Row():
                                channel = gr.Radio(["mono", "stereo", "stereo effect"], label="Output Audio Channels", value="stereo", interactive=True, scale=1)
                                sr_select = gr.Dropdown(["11025", "16000", "22050", "24000", "32000", "44100", "48000"], label="Output Audio Sample Rate", value="48000", interactive=True)
                            with gr.Row():
                                model = gr.Radio(["melody", "small", "medium", "large", "custom"], label="Model", value="large", interactive=True, scale=1)
                                with gr.Column():
                                    dropdown = gr.Dropdown(choices=get_available_models(), value=("No models found" if len(get_available_models()) < 1 else get_available_models()[0]), label='Custom Model (models folder)', elem_classes='slim-dropdown', interactive=True)
                                    ui.create_refresh_button(dropdown, lambda: None, lambda: {'choices': get_available_models()}, 'refresh-button')
                                    basemodel = gr.Radio(["small", "medium", "melody", "large"], label="Base Model", value="medium", interactive=True, scale=1)
                            with gr.Row():
                                decoder = gr.Radio(["Default", "MultiBand_Diffusion"], label="Decoder", value="Default", interactive=True)
                            with gr.Row():
                                topk = gr.Number(label="Top-k", value=250, interactive=True)
                                topp = gr.Number(label="Top-p", value=0, interactive=True)
                                temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
                                cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
                        with gr.Row():
                            submit = gr.Button("Generate", variant="primary")
                            # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
                            _ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
                    with gr.Column() as c:
                        with gr.Tab("Output"):
                            output = gr.Video(label="Generated Music", scale=0)
                            with gr.Row():
                                audio_only = gr.Audio(type="numpy", label="Audio Only", interactive=False)
                                backup_only = gr.Audio(type="numpy", label="Backup Audio", interactive=False, visible=False)
                                send_audio = gr.Button("Send to Input Audio")
                            seed_used = gr.Number(label='Seed used', value=-1, interactive=False)
                            download = gr.File(label="Generated Files", interactive=False)
            with gr.Tab("Wiki"):
                gr.Markdown(
                            """
                            - **[Generate (button)]:**  
                            Generates the music with the given settings and prompts.

                            - **[Interrupt (button)]:**  
                            Stops the music generation as soon as it can, providing an incomplete output.

                            ---

                            ### Generation Tab:

                            #### Structure Prompts:

                            This feature helps reduce repetetive prompts by allowing you to set global prompts  
                            that will be used for all prompt segments.

                            - **[Structure Prompts (checkbox)]:**  
                            Enable/Disable the structure prompts feature.

                            - **[BPM (number)]:**  
                            Beats per minute of the generated music.

                            - **[Key (dropdown)]:**  
                            The key of the generated music.

                            - **[Scale (dropdown)]:**  
                            The scale of the generated music.

                            - **[Global Prompt (text)]:**  
                            Here write the prompt that you wish to be used for all prompt segments.

                            #### Multi-Prompt: 
                            
                            This feature allows you to control the music, adding variation to different time segments.  
                            You have up to 10 prompt segments. the first prompt will always be 30s long  
                            the other prompts will be [30s - overlap].  
                            for example if the overlap is 10s, each prompt segment will be 20s.

                            - **[Prompt Segments (number)]:**  
                            Amount of unique prompt to generate throughout the music generation.

                            - **[Prompt/Input Text (prompt)]:**  
                            Here describe the music you wish the model to generate.

                            - **[Repeat (number)]:**  
                            Write how many times this prompt will repeat (instead of wasting another prompt segment on the same prompt).

                            - **[Time (text)]:**  
                            The time of the prompt segment.

                            - **[Calculate Timings (button)]:**  
                            Calculates the timings of the prompt segments.

                            - **[Duration (number)]:**  
                            How long you want the generated music to be (in seconds).

                            - **[Overlap (number)]:**  
                            How much each new segment will reference the previous segment (in seconds).  
                            For example, if you choose 20s: Each new segment after the first one will reference the previous segment 20s  
                            and will generate only 10s of new music. The model can only process 30s of music.

                            - **[Seed (number)]:**  
                            Your generated music id. If you wish to generate the exact same music,  
                            place the exact seed with the exact prompts  
                            (This way you can also extend specific song that was generated short).

                            - **[Random Seed (button)]:**  
                            Gives "-1" as a seed, which counts as a random seed.

                            - **[Copy Previous Seed (button)]:**  
                            Copies the seed from the output seed (if you don't feel like doing it manualy).

                            ---

                            ### Audio Tab:

                            - **[Input Type (selection)]:**  
                            `File` mode allows you to upload an audio file to use as input  
                            `Mic` mode allows you to use your microphone as input

                            - **[Input Audio Mode (selection)]:**  
                            `Melody` mode only works with the melody model: it conditions the music generation to reference the melody  
                            `Sample` mode works with any model: it gives a music sample to the model to generate its continuation.

                            - **[Trim Start and Trim End (numbers)]:**  
                            `Trim Start` set how much you'd like to trim the input audio from the start  
                            `Trim End` same as the above but from the end

                            - **[Input Audio (audio file)]:**  
                            Input here the audio you wish to use with "melody" or "sample" mode.

                            ---

                            ### Customization Tab:

                            - **[Background Color (color)]:**  
                            Works only if you don't upload image. Color of the background of the waveform.

                            - **[Bar Color Start (color)]:**  
                            First color of the waveform bars.

                            - **[Bar Color End (color)]:**  
                            Second color of the waveform bars.

                            - **[Background Image (image)]:**  
                            Background image that you wish to be attached to the generated video along with the waveform.

                            - **[Height and Width (numbers)]:**  
                            Output video resolution, only works with image.  
                            (minimum height and width is 256).
                            
                            ---

                            ### Settings Tab:

                            - **[Output Audio Channels (selection)]:**  
                            With this you can select the amount of channels that you wish for your output audio.  
                            `mono` is a straightforward single channel audio  
                            `stereo` is a dual channel audio but it will sound more or less like mono  
                            `stereo effect` this one is also dual channel but uses tricks to simulate a stereo audio.

                            - **[Output Audio Sample Rate (dropdown)]:**  
                            The output audio sample rate, the model default is 32000.

                            - **[Model (selection)]:**  
                            Here you can choose which model you wish to use:  
                            `melody` model is based on the medium model with a unique feature that lets you use melody conditioning  
                            `small` model is trained on 300M parameters  
                            `medium` model is trained on 1.5B parameters  
                            `large` model is trained on 3.3B parameters  
                            `custom` model runs the custom model that you provided.

                            - **[Custom Model (selection)]:**  
                            This dropdown will show you models that are placed in the `models` folder  
                            you must select `custom` in the model options in order to use it.

                            - **[Refresh (button)]:**  
                            Refreshes the dropdown list for custom model.

                            - **[Base Model (selection)]:**  
                            Choose here the model that your custom model is based on.

                            - **[Decoder (selection)]:**  
                            Choose here the decoder that you wish to use:  
                            `Default` is the default decoder  
                            `MultiBand_Diffusion` is a decoder that uses diffusion to generate the audio.

                            - **[Top-k (number)]:**  
                            is a parameter used in text generation models, including music generation models. It determines the number of most likely next tokens to consider at each step of the generation process. The model ranks all possible tokens based on their predicted probabilities, and then selects the top-k tokens from the ranked list. The model then samples from this reduced set of tokens to determine the next token in the generated sequence. A smaller value of k results in a more focused and deterministic output, while a larger value of k allows for more diversity in the generated music.

                            - **[Top-p (number)]:**  
                            also known as nucleus sampling or probabilistic sampling, is another method used for token selection during text generation. Instead of specifying a fixed number like top-k, top-p considers the cumulative probability distribution of the ranked tokens. It selects the smallest possible set of tokens whose cumulative probability exceeds a certain threshold (usually denoted as p). The model then samples from this set to choose the next token. This approach ensures that the generated output maintains a balance between diversity and coherence, as it allows for a varying number of tokens to be considered based on their probabilities.
                            
                            - **[Temperature (number)]:**  
                            is a parameter that controls the randomness of the generated output. It is applied during the sampling process, where a higher temperature value results in more random and diverse outputs, while a lower temperature value leads to more deterministic and focused outputs. In the context of music generation, a higher temperature can introduce more variability and creativity into the generated music, but it may also lead to less coherent or structured compositions. On the other hand, a lower temperature can produce more repetitive and predictable music.

                            - **[Classifier Free Guidance (number)]:**  
                            refers to a technique used in some music generation models where a separate classifier network is trained to provide guidance or control over the generated music. This classifier is trained on labeled data to recognize specific musical characteristics or styles. During the generation process, the output of the generator model is evaluated by the classifier, and the generator is encouraged to produce music that aligns with the desired characteristics or style. This approach allows for more fine-grained control over the generated music, enabling users to specify certain attributes they want the model to capture.
                            """
                        )
        with gr.Tab("Audio Info"):
            gr.Markdown(
                """
                ### Audio Info
                """
            )
            with gr.Row():
                with gr.Column():
                    in_audio = gr.File(type="file", label="Input Any Audio", interactive=True)
                    with gr.Row():
                        send_gen = gr.Button("Send to MusicGen", variant="primary")
                        send_gen_a = gr.Button("Send to AudioGen", variant="primary")
                with gr.Column():
                    info = gr.Textbox(label="Audio Info", lines=10, interactive=False)        
        with gr.Tab("About"):
            with gr.Row():
                with gr.Column():
                    gen_type = gr.Text(value="music", interactive=False, visible=False)
                    gen_type_a = gr.Text(value="audio", interactive=False, visible=False)
                    gr.Markdown(
                                    """
                                    # Soundscapes by TulipAI
                                    Welcome to Soundscapes - TulipAI’s flagship Audio Storytelling Toolkit. Designed with modern content creators in mind, our AI-driven platform generates audio sound effects in just minutes tailored to your unique needs.
                                    
                                    ## PERFECT FOR:
                                    
                                    - Podcasters aiming to immerse their listeners.
                                    - Audiobooks sound engineers
                                    - Audio engineers seeking that elusive sound.
                                    - Producers wanting to enrich their auditory experience.
                                    - Sound designers craving innovative tools.
                                    - YouTubers desiring to elevate their content.
                                    """
                                )
                with gr.Column():
                    #gr.Image(shape=(5,5))
                    gr.Image(shape=(5,5), value = "https://tulipai.co/assets/images/image01.png")
        
        send_gen.click(info_to_params, inputs=[in_audio], outputs=[decoder, struc_prompts, global_prompt, bpm, key, scale, model, dropdown, basemodel, s, prompts[0], prompts[1], prompts[2], prompts[3], prompts[4], prompts[5], prompts[6], prompts[7], prompts[8], prompts[9], repeats[0], repeats[1], repeats[2], repeats[3], repeats[4], repeats[5], repeats[6], repeats[7], repeats[8], repeats[9], mode, duration, topk, topp, temperature, cfg_coef, seed, overlap, channel, sr_select], queue=False)
        reuse_seed.click(fn=lambda x: x, inputs=[seed_used], outputs=[seed], queue=False)
        send_audio.click(fn=lambda x: x, inputs=[backup_only], outputs=[audio], queue=False)
        submit.click(predict_full, inputs=[gen_type, model, decoder, dropdown, basemodel, s, struc_prompts, bpm, key, scale, global_prompt, prompts[0], prompts[1], prompts[2], prompts[3], prompts[4], prompts[5], prompts[6], prompts[7], prompts[8], prompts[9], repeats[0], repeats[1], repeats[2], repeats[3], repeats[4], repeats[5], repeats[6], repeats[7], repeats[8], repeats[9], audio, mode, trim_start, trim_end, duration, topk, topp, temperature, cfg_coef, seed, overlap, image, height, width, background, bar1, bar2, channel, sr_select], outputs=[output, audio_only, backup_only, download, seed_used])
        input_type.change(toggle_audio_src, input_type, [audio], queue=False, show_progress=False)
        to_calc.click(calc_time, inputs=[gen_type, s, duration, overlap, repeats[0], repeats[1], repeats[2], repeats[3], repeats[4], repeats[5], repeats[6], repeats[7], repeats[8], repeats[9]], outputs=[calcs[0], calcs[1], calcs[2], calcs[3], calcs[4], calcs[5], calcs[6], calcs[7], calcs[8], calcs[9]], queue=False)'''


        gen_type = gr.Text(value="music", interactive=False, visible=False)
        gen_type_a = gr.Text(value="audio", interactive=False, visible=False)

        #send_gen_a.click(info_to_params_a, inputs=[in_audio], outputs=[decoder_a, struc_prompts_a, global_prompt_a, s_a, prompts_a[0], prompts_a[1], prompts_a[2], prompts_a[3], prompts_a[4], prompts_a[5], prompts_a[6], prompts_a[7], prompts_a[8], prompts_a[9], repeats_a[0], repeats_a[1], repeats_a[2], repeats_a[3], repeats_a[4], repeats_a[5], repeats_a[6], repeats_a[7], repeats_a[8], repeats_a[9], duration_a, topk_a, topp_a, temperature_a, cfg_coef_a, seed_a, overlap_a, channel_a, sr_select_a], queue=False)
        reuse_seed_a.click(fn=lambda x: x, inputs=[seed_used_a], outputs=[seed_a], queue=False)
        send_audio_a.click(fn=lambda x: x, inputs=[backup_only_a], outputs=[audio_a], queue=False)
        submit_a.click(predict_full, inputs=[gen_type_a, model_a, decoder_a, dropdown, basemodel, s_a, struc_prompts_a, bpm, key, scale, global_prompt_a, prompts_a[0], prompts_a[1], prompts_a[2], prompts_a[3], prompts_a[4], prompts_a[5], prompts_a[6], prompts_a[7], prompts_a[8], prompts_a[9], repeats_a[0], repeats_a[1], repeats_a[2], repeats_a[3], repeats_a[4], repeats_a[5], repeats_a[6], repeats_a[7], repeats_a[8], repeats_a[9], audio_a, mode_a, trim_start_a, trim_end_a, duration_a, topk_a, topp_a, temperature_a, cfg_coef_a, seed_a, overlap_a, image_a, height_a, width_a, background_a, bar1_a, bar2_a, channel_a, sr_select_a], outputs=[output_a, audio_only_a, backup_only_a, download_a, seed_used_a])
        input_type_a.change(toggle_audio_src, input_type_a, [audio_a], queue=False, show_progress=True)
        to_calc_a.click(calc_time, inputs=[gen_type_a, s_a, duration_a, overlap_a, repeats_a[0], repeats_a[1], repeats_a[2], repeats_a[3], repeats_a[4], repeats_a[5], repeats_a[6], repeats_a[7], repeats_a[8], repeats_a[9]], outputs=[calcs_a[0], calcs_a[1], calcs_a[2], calcs_a[3], calcs_a[4], calcs_a[5], calcs_a[6], calcs_a[7], calcs_a[8], calcs_a[9]], queue=False)

        #in_audio.change(get_audio_info, in_audio, outputs=[info])

        def variable_outputs(k):
            k = int(k) - 1
            return [gr.Textbox.update(visible=True)]*k + [gr.Textbox.update(visible=False)]*(max_textboxes-k)
        def get_size(image):
            if image is not None:
                img = Image.open(image)
                img_height = img.height
                img_width = img.width
                if (img_height%2) != 0:
                    img_height = img_height + 1
                if (img_width%2) != 0:
                    img_width = img_width + 1
                return img_height, img_width
            else:
                return 512, 768

        #image.change(get_size, image, outputs=[height, width])
        #image_a.change(get_size, image_a, outputs=[height_a, width_a])
        #s.change(variable_outputs, s, textboxes)
        s_a.change(variable_outputs, s_a, textboxes_a)
        interface.queue().launch(**launch_kwargs)
        #interface.queue().launch(share=True)


def ui_batched(launch_kwargs):
    with gr.Blocks() as demo:
        gr.Markdown(
            """
            # MusicGen

            This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
            a simple and controllable model for music generation
            presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
            <br/>
            <a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true"
                style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
            <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
                src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
            for longer sequences, more control and no queue.</p>
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Text(label="Describe your music", lines=2, interactive=True)
                    with gr.Column():
                        radio = gr.Radio(["file", "mic"], value="file",
                                         label="Condition on a melody (optional) File or Mic")
                        melody = gr.Audio(source="upload", type="numpy", label="File",
                                          interactive=True, elem_id="melody-input")
                with gr.Row():
                    submit = gr.Button("Generate")
            with gr.Column():
                output = gr.Video(label="Generated Music")
                audio_output = gr.Audio(label="Generated Music (wav)", type='filepath')
        submit.click(predict_batched, inputs=[text, melody],
                     outputs=[output, audio_output], batch=True, max_batch_size=MAX_BATCH_SIZE)
        radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
        gr.Examples(
            fn=predict_batched,
            examples=[
                [
                    "An 80s driving pop song with heavy drums and synth pads in the background",
                    "./assets/bach.mp3",
                ],
                [
                    "A cheerful country song with acoustic guitars",
                    "./assets/bolero_ravel.mp3",
                ],
                [
                    "90s rock song with electric guitar and heavy drums",
                    None,
                ],
                [
                    "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
                    "./assets/bach.mp3",
                ],
                [
                    "lofi slow bpm electro chill with organic samples",
                    None,
                ],
            ],
            inputs=[text, melody],
            outputs=[output]
        )
        gr.Markdown("""
        ### More details

        The model will generate 12 seconds of audio based on the description you provided.
        You can optionally provide a reference audio from which a broad melody will be extracted.
        The model will then try to follow both the description and melody provided.
        All samples are generated with the `melody` model.

        You can also use your own GPU or a Google Colab by following the instructions on our repo.

        See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
        for more details.
        """)

        demo.queue(max_size=8 * 4).launch(**launch_kwargs)
        #demo.queue().launch(share=True)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--listen',
        type=str,
        default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
        help='IP to listen on for connections to Gradio',
    )
    parser.add_argument(
        '--username', type=str, default='', help='Username for authentication'
    )
    parser.add_argument(
        '--password', type=str, default='', help='Password for authentication'
    )
    parser.add_argument(
        '--server_port',
        type=int,
        default=0,
        help='Port to run the server listener on',
    )
    parser.add_argument(
        '--inbrowser', action='store_true', help='Open in browser'
    )
    parser.add_argument(
        '--share', action='store_true', help='Share the gradio UI'
    )
    parser.add_argument(
        '--unload_model', action='store_true', help='Unload the model after every generation to save GPU memory'
    )

    parser.add_argument(
        '--unload_to_cpu', action='store_true', help='Move the model to main RAM after every generation to save GPU memory but reload faster than after full unload (see above)'
    )

    parser.add_argument(
        '--cache', action='store_true', help='Cache models in RAM to quickly switch between them'
    )

    args = parser.parse_args()
    UNLOAD_MODEL = args.unload_model
    MOVE_TO_CPU = args.unload_to_cpu
    if args.cache:
        MODELS = {}

    launch_kwargs = {}
    launch_kwargs['server_name'] = args.listen

    if args.username and args.password:
        launch_kwargs['auth'] = (args.username, args.password)
    if args.server_port:
        launch_kwargs['server_port'] = args.server_port
    if args.inbrowser:
        launch_kwargs['inbrowser'] = args.inbrowser
    if args.share:
        launch_kwargs['share'] = args.share

    # Show the interface
    if IS_BATCHED:
        global USE_DIFFUSION
        USE_DIFFUSION = False
        ui_batched(launch_kwargs)
    else:
        ui_full(launch_kwargs)