Spaces:
Runtime error
Runtime error
| import argparse | |
| import csv | |
| import random | |
| import sys | |
| import os | |
| import wget | |
| from collections import Counter | |
| from pathlib import Path | |
| import cv2 | |
| import gradio as gr | |
| import numpy as np | |
| from matplotlib import font_manager | |
| from ultralytics import YOLO | |
| ROOT_PATH = sys.path[0] # 项目根目录 | |
| fonts_list = ["SimSun.ttf", "TimesNewRoman.ttf", "malgun.ttf"] # 字体列表 | |
| models_list = ["cnn_se.pt", "detr_based.pt", "vit_based.pt", "yolov5_based.pt", "yolov8_based.pt"] # 模型列表 | |
| fonts_directory_path = Path(ROOT_PATH, "fonts") | |
| models_directory_path = Path(ROOT_PATH, "models") # 模型存放在项目的根目录 | |
| data_url_dict = { | |
| "SimSun.ttf": "https://raw.githubusercontent.com/Tsumugii24/Typora-images/main/files/SimSun.ttf", | |
| "TimesNewRoman.ttf": "https://raw.githubusercontent.com/Tsumugii24/Typora-images/main/files/TimesNewRoman.ttf", | |
| "malgun.ttf": "https://raw.githubusercontent.com/Tsumugii24/Typora-images/main/files/malgun.ttf", | |
| } | |
| model_url_dict = { | |
| "cnn_se.pt": "https://huggingface.co/Tsumugii/lesion-cells-det/raw/main/cnn_se.pt", | |
| "detr_based.pt": "https://huggingface.co/Tsumugii/lesion-cells-det/raw/main/detr_based.pt", | |
| "vit_based.pt": "https://huggingface.co/Tsumugii/lesion-cells-det/raw/main/vit_based.pt", | |
| "yolov5_based.pt": "https://huggingface.co/Tsumugii/lesion-cells-det/raw/main/yolov5_based.pt", | |
| "yolov8_based.pt": "https://huggingface.co/Tsumugii/lesion-cells-det/raw/main/yolov8_based.pt", | |
| } | |
| # 判断字体文件是否存在 | |
| def is_fonts(fonts_dir): | |
| if fonts_dir.is_dir(): | |
| # 如果本地字体库存在 | |
| local_font_list = os.listdir(fonts_dir) # 本地字体库 | |
| font_diff = list(set(fonts_list).difference(set(local_font_list))) | |
| if font_diff != []: | |
| # 缺失字体 | |
| download_fonts(font_diff) # 下载缺失的字体 | |
| else: | |
| print(f"{fonts_list}[bold green]Required fonts already downloaded![/bold green]") | |
| else: | |
| # 本地字体库不存在,创建字体库 | |
| print("[bold red]Local fonts library does not exist, creating now...[/bold red]") | |
| download_fonts(fonts_list) # 创建字体库 | |
| # 判断模型文件是否存在 | |
| def is_models(models_dir): | |
| if models_dir.is_dir(): | |
| # 如果本地模型库存在 | |
| local_model_list = os.listdir(models_dir) # 本地模型库 | |
| model_diff = list(set(models_list()).difference(set(local_model_list))) | |
| if model_diff != []: | |
| # 缺失模型 | |
| download_models(model_diff) # 下载缺失的模型 | |
| else: | |
| print(f"{models_list}[bold green]Required models already downloaded![/bold green]") | |
| else: | |
| # 本地模型库不存在,创建模型库 | |
| print("[bold red]Local models library does not exist, creating now...[/bold red]") | |
| download_models(models_list) # 创建模型库 | |
| # 下载字体 | |
| def download_fonts(font_diff): | |
| global font_name | |
| for k, v in data_url_dict.items(): | |
| if k in font_diff: | |
| font_name = v.split("/")[-1] # 字体名称 | |
| fonts_directory_path.mkdir(parents=True, exist_ok=True) # 创建目录 | |
| font_file_path = f"{ROOT_PATH}/fonts/{font_name}" # 字体路径 | |
| # 下载字体文件 | |
| wget.download(v, font_file_path) | |
| # 下载模型 | |
| def download_models(model_diff): | |
| global model_name | |
| for k in model_diff: | |
| v = model_url_dict[k] | |
| model_name = v.split("/")[-1] # 模型名称 | |
| model_file_path = f"{ROOT_PATH}/models/{model_name}" # 模型路径 | |
| # 下载模型文件 | |
| wget.download(v, model_file_path) | |
| is_fonts(fonts_directory_path) | |
| is_models(models_directory_path) | |
| # --------------------- 字体库 --------------------- | |
| SimSun_path = f"{ROOT_PATH}/fonts/SimSun.ttf" # 宋体文件路径 | |
| TimesNesRoman_path = f"{ROOT_PATH}/fonts/TimesNewRoman.ttf" # 新罗马字体文件路径 | |
| # 宋体 | |
| SimSun = font_manager.FontProperties(fname=SimSun_path, size=12) | |
| # 新罗马字体 | |
| TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12) | |
| import yaml | |
| from PIL import Image, ImageDraw, ImageFont | |
| # from util.fonts_opt import is_fonts | |
| ROOT_PATH = sys.path[0] # 根目录 | |
| # Gradio version | |
| GYD_VERSION = "Gradio Lesion-Cells DET v1.0" | |
| # 文件后缀 | |
| suffix_list = [".csv", ".yaml"] | |
| # 字体大小 | |
| FONTSIZE = 25 | |
| # 目标尺寸 | |
| obj_style = ["small", "medium", "large"] | |
| # title = "Multi-granularity Lesion Cells Object Detection based on deep neural network" | |
| # description = "<center><h3>Description: This is a WebUI interface demo, Maintained by G1 JIANG SHUFAN</h3></center>" | |
| GYD_TITLE = """ | |
| <p align='center'><a href='https://github.com/Tsumugii24/lesion-cells-det'> | |
| <img src='https://cdn.jsdelivr.net/gh/Tsumugii24/Typora-images@main/images/2023%2F11%2F12%2F2ce6ad153e2e862d5017864fc5087e59-image-20231112230354573-56a688.png' alt='Simple Icons' ></a> | |
| <center><h1>Multi-granularity Lesion Cells Object Detection based on deep neural network</h1></center> | |
| <center><h3>Description: This is a WebUI interface demo, Maintained by G1 JIANG SHUFAN</h3></center> | |
| </p> | |
| """ | |
| GYD_SUB_TITLE = """ | |
| Here is My GitHub Homepage: https://github.com/Tsumugii24 😊 | |
| """ | |
| EXAMPLES_DET = [ | |
| ["./img_examples/test/moderate0.BMP", "detr_based", "cpu", 640, 0.6, | |
| 0.5, 10, "all range"], | |
| ["./img_examples/test/normal_co0.BMP", "vit_based", "cpu", 640, 0.5, | |
| 0.5, 20, "all range"], | |
| ["./img_examples/test/1280_1920_1.jpg", "yolov8_based", "cpu", 1280, 0.4, 0.5, 15, | |
| "all range"], | |
| ["./img_examples/test/normal_inter1.BMP", "detr_based", "cpu", 640, 0.4, | |
| 0.5, 30, "all range"], | |
| ["./img_examples/test/1920_1280_1.jpg", "yolov8_based", "cpu", 1280, 0.4, 0.5, 20, | |
| "all range"], | |
| ["./img_examples/test/severe2.BMP", "detr_based", "cpu", 640, 0.5, | |
| 0.5, 20, "all range"] | |
| ] | |
| def parse_args(known=False): | |
| parser = argparse.ArgumentParser(description=GYD_VERSION) | |
| parser.add_argument("--model_name", "-mn", default="detr_based", type=str, help="model name") | |
| parser.add_argument( | |
| "--model_cfg", | |
| "-mc", | |
| default="./model_config/model_name_cells.yaml", | |
| type=str, | |
| help="model config", | |
| ) | |
| parser.add_argument( | |
| "--cls_name", | |
| "-cls", | |
| default="./cls_name/cls_name_cells_en.yaml", | |
| type=str, | |
| help="cls name", | |
| ) | |
| parser.add_argument( | |
| "--nms_conf", | |
| "-conf", | |
| default=0.5, | |
| type=float, | |
| help="model NMS confidence threshold", | |
| ) | |
| parser.add_argument("--nms_iou", "-iou", default=0.5, type=float, help="model NMS IoU threshold") | |
| parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size") | |
| parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num") | |
| parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step") | |
| parser.add_argument( | |
| "--is_login", | |
| "-isl", | |
| action="store_true", | |
| default=False, | |
| help="is login", | |
| ) | |
| parser.add_argument('--usr_pwd', | |
| "-up", | |
| nargs='+', | |
| type=str, | |
| default=["admin", "admin"], | |
| help="user & password for login") | |
| parser.add_argument( | |
| "--is_share", | |
| "-is", | |
| action="store_true", | |
| default=False, | |
| help="is login", | |
| ) | |
| parser.add_argument("--server_port", "-sp", default=7860, type=int, help="server port") | |
| args = parser.parse_known_args()[0] if known else parser.parse_args() | |
| return args | |
| # yaml文件解析 | |
| def yaml_parse(file_path): | |
| return yaml.safe_load(open(file_path, encoding="utf-8").read()) | |
| # yaml csv 文件解析 | |
| def yaml_csv(file_path, file_tag): | |
| file_suffix = Path(file_path).suffix | |
| if file_suffix == suffix_list[0]: | |
| # 模型名称 | |
| file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版 | |
| elif file_suffix == suffix_list[1]: | |
| # 模型名称 | |
| file_names = yaml_parse(file_path).get(file_tag) # yaml版 | |
| else: | |
| print(f"The format of {file_path} is incorrect!") | |
| sys.exit() | |
| return file_names | |
| # 检查网络连接 | |
| def check_online(): | |
| # reference: https://github.com/ultralytics/yolov5/blob/master/utils/general.py | |
| # check internet connectivity | |
| import socket | |
| try: | |
| socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility | |
| return True | |
| except OSError: | |
| return False | |
| # 标签和边界框颜色设置 | |
| def color_set(cls_num): | |
| color_list = [] | |
| for i in range(cls_num): | |
| color = tuple(np.random.choice(range(256), size=3)) | |
| color_list.append(color) | |
| return color_list | |
| # 随机生成浅色系或者深色系 | |
| def random_color(cls_num, is_light=True): | |
| color_list = [] | |
| for i in range(cls_num): | |
| color = ( | |
| random.randint(0, 127) + int(is_light) * 128, | |
| random.randint(0, 127) + int(is_light) * 128, | |
| random.randint(0, 127) + int(is_light) * 128, | |
| ) | |
| color_list.append(color) | |
| return color_list | |
| # 检测绘制 | |
| def pil_draw(img, score_l, bbox_l, cls_l, cls_index_l, textFont, color_list): | |
| img_pil = ImageDraw.Draw(img) | |
| id = 0 | |
| for score, (xmin, ymin, xmax, ymax), label, cls_index in zip(score_l, bbox_l, cls_l, cls_index_l): | |
| img_pil.rectangle([xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2) # 边界框 | |
| countdown_msg = f"{label} {score:.2f}" | |
| # text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸 pillow 9.5.0 | |
| # left, top, left + width, top + height | |
| # 标签尺寸 pillow 10.0.0 | |
| text_xmin, text_ymin, text_xmax, text_ymax = textFont.getbbox(countdown_msg) | |
| # 标签背景 | |
| img_pil.rectangle( | |
| # (xmin, ymin, xmin + text_w, ymin + text_h), # pillow 9.5.0 | |
| (xmin, ymin, xmin + text_xmax - text_xmin, ymin + text_ymax - text_ymin), # pillow 10.0.0 | |
| fill=color_list[cls_index], | |
| outline=color_list[cls_index], | |
| ) | |
| # 标签 | |
| img_pil.multiline_text( | |
| (xmin, ymin), | |
| countdown_msg, | |
| fill=(0, 0, 0), | |
| font=textFont, | |
| align="center", | |
| ) | |
| id += 1 | |
| return img | |
| # 绘制多边形 | |
| def polygon_drawing(img_mask, canvas, color_seg): | |
| # ------- RGB转BGR ------- | |
| color_seg = list(color_seg) | |
| color_seg[0], color_seg[2] = color_seg[2], color_seg[0] | |
| color_seg = tuple(color_seg) | |
| # 定义多边形的顶点 | |
| pts = np.array(img_mask, dtype=np.int32) | |
| # 多边形绘制 | |
| cv2.drawContours(canvas, [pts], -1, color_seg, thickness=-1) | |
| # 输出分割结果 | |
| def seg_output(img_path, seg_mask_list, color_list, cls_list): | |
| img = cv2.imread(img_path) | |
| img_c = img.copy() | |
| # w, h = img.shape[1], img.shape[0] | |
| # 获取分割坐标 | |
| for seg_mask, cls_index in zip(seg_mask_list, cls_list): | |
| img_mask = [] | |
| for i in range(len(seg_mask)): | |
| # img_mask.append([seg_mask[i][0] * w, seg_mask[i][1] * h]) | |
| img_mask.append([seg_mask[i][0], seg_mask[i][1]]) | |
| polygon_drawing(img_mask, img_c, color_list[int(cls_index)]) # 绘制分割图形 | |
| img_mask_merge = cv2.addWeighted(img, 0.3, img_c, 0.7, 0) # 合并图像 | |
| return img_mask_merge | |
| # 目标检测和图像分割模型加载 | |
| def model_loading(img_path, device_opt, conf, iou, infer_size, max_det, yolo_model="yolov8_based.pt"): | |
| model = YOLO(yolo_model) | |
| results = model(source=img_path, device=device_opt, imgsz=infer_size, conf=conf, iou=iou, max_det=max_det) | |
| results = list(results)[0] | |
| return results | |
| # YOLOv8图片检测函数 | |
| def yolo_det_img(img_path, model_name, device_opt, infer_size, conf, iou, max_det, obj_size): | |
| global model, model_name_tmp, device_tmp | |
| s_obj, m_obj, l_obj = 0, 0, 0 | |
| area_obj_all = [] # 目标面积 | |
| score_det_stat = [] # 置信度统计 | |
| bbox_det_stat = [] # 边界框统计 | |
| cls_det_stat = [] # 类别数量统计 | |
| cls_index_det_stat = [] # 1 | |
| # 模型加载 | |
| predict_results = model_loading(img_path, device_opt, conf, iou, infer_size, max_det, yolo_model=f"models/{model_name}.pt") | |
| # 检测参数 | |
| xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist() | |
| conf_list = predict_results.boxes.conf.cpu().numpy().tolist() | |
| cls_list = predict_results.boxes.cls.cpu().numpy().tolist() | |
| # 颜色列表 | |
| color_list = random_color(len(model_cls_name_cp), True) | |
| # 图像分割 | |
| if (model_name[-3:] == "seg"): | |
| # masks_list = predict_results.masks.xyn | |
| masks_list = predict_results.masks.xy | |
| img_mask_merge = seg_output(img_path, masks_list, color_list, cls_list) | |
| img = Image.fromarray(cv2.cvtColor(img_mask_merge, cv2.COLOR_BGRA2RGBA)) | |
| else: | |
| img = Image.open(img_path) | |
| # 判断检测对象是否为空 | |
| if (xyxy_list != []): | |
| # ---------------- 加载字体 ---------------- | |
| yaml_index = cls_name.index(".yaml") | |
| cls_name_lang = cls_name[yaml_index - 2:yaml_index] | |
| if cls_name_lang == "zh": | |
| # Chinese | |
| textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE) | |
| elif cls_name_lang == "en": | |
| # English | |
| textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE) | |
| else: | |
| # others | |
| textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE) | |
| for i in range(len(xyxy_list)): | |
| # ------------ 边框坐标 ------------ | |
| x0 = int(xyxy_list[i][0]) | |
| y0 = int(xyxy_list[i][1]) | |
| x1 = int(xyxy_list[i][2]) | |
| y1 = int(xyxy_list[i][3]) | |
| # ---------- 加入目标尺寸 ---------- | |
| w_obj = x1 - x0 | |
| h_obj = y1 - y0 | |
| area_obj = w_obj * h_obj # 目标尺寸 | |
| if (obj_size == "small" and area_obj > 0 and area_obj <= 32 ** 2): | |
| obj_cls_index = int(cls_list[i]) # 类别索引 | |
| cls_index_det_stat.append(obj_cls_index) | |
| obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
| cls_det_stat.append(obj_cls) | |
| bbox_det_stat.append((x0, y0, x1, y1)) | |
| conf = float(conf_list[i]) # 置信度 | |
| score_det_stat.append(conf) | |
| area_obj_all.append(area_obj) | |
| elif (obj_size == "medium" and area_obj > 32 ** 2 and area_obj <= 96 ** 2): | |
| obj_cls_index = int(cls_list[i]) # 类别索引 | |
| cls_index_det_stat.append(obj_cls_index) | |
| obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
| cls_det_stat.append(obj_cls) | |
| bbox_det_stat.append((x0, y0, x1, y1)) | |
| conf = float(conf_list[i]) # 置信度 | |
| score_det_stat.append(conf) | |
| area_obj_all.append(area_obj) | |
| elif (obj_size == "large" and area_obj > 96 ** 2): | |
| obj_cls_index = int(cls_list[i]) # 类别索引 | |
| cls_index_det_stat.append(obj_cls_index) | |
| obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
| cls_det_stat.append(obj_cls) | |
| bbox_det_stat.append((x0, y0, x1, y1)) | |
| conf = float(conf_list[i]) # 置信度 | |
| score_det_stat.append(conf) | |
| area_obj_all.append(area_obj) | |
| elif (obj_size == "all range"): | |
| obj_cls_index = int(cls_list[i]) # 类别索引 | |
| cls_index_det_stat.append(obj_cls_index) | |
| obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
| cls_det_stat.append(obj_cls) | |
| bbox_det_stat.append((x0, y0, x1, y1)) | |
| conf = float(conf_list[i]) # 置信度 | |
| score_det_stat.append(conf) | |
| area_obj_all.append(area_obj) | |
| det_img = pil_draw(img, score_det_stat, bbox_det_stat, cls_det_stat, cls_index_det_stat, textFont, color_list) | |
| # -------------- 目标尺寸计算 -------------- | |
| for i in range(len(area_obj_all)): | |
| if (0 < area_obj_all[i] <= 32 ** 2): | |
| s_obj = s_obj + 1 | |
| elif (32 ** 2 < area_obj_all[i] <= 96 ** 2): | |
| m_obj = m_obj + 1 | |
| elif (area_obj_all[i] > 96 ** 2): | |
| l_obj = l_obj + 1 | |
| sml_obj_total = s_obj + m_obj + l_obj | |
| objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)} | |
| # ------------ 类别统计 ------------ | |
| clsRatio_dict = {} | |
| clsDet_dict = Counter(cls_det_stat) | |
| clsDet_dict_sum = sum(clsDet_dict.values()) | |
| for k, v in clsDet_dict.items(): | |
| clsRatio_dict[k] = v / clsDet_dict_sum | |
| gr.Info("Inference Success!") | |
| return det_img, objSize_dict, clsRatio_dict | |
| else: | |
| raise gr.Error("Failed! This model cannot detect anything from this image, Please try another one.") | |
| def main(args): | |
| gr.close_all() | |
| global model_cls_name_cp, cls_name | |
| nms_conf = args.nms_conf | |
| nms_iou = args.nms_iou | |
| model_name = args.model_name | |
| model_cfg = args.model_cfg | |
| cls_name = args.cls_name | |
| inference_size = args.inference_size | |
| max_detnum = args.max_detnum | |
| slider_step = args.slider_step | |
| # is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件 | |
| model_names = yaml_csv(model_cfg, "model_names") # 模型名称 | |
| model_cls_name = yaml_csv(cls_name, "model_cls_name") # 类别名称 | |
| model_cls_name_cp = model_cls_name.copy() # 类别名称 | |
| custom_theme = gr.themes.Soft(primary_hue="slate", secondary_hue="sky").set( | |
| button_secondary_background_fill="*neutral_100", | |
| button_secondary_background_fill_hover="*neutral_200") | |
| custom_css = '''#disp_image { | |
| text-align: center; /* Horizontally center the content */ | |
| }''' | |
| # ------------ Gradio Blocks ------------ | |
| with gr.Blocks(theme=custom_theme, css=custom_css) as gyd: | |
| with gr.Row(): | |
| gr.Markdown(GYD_TITLE) | |
| with gr.Row(): | |
| gr.Markdown(GYD_SUB_TITLE) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| with gr.Tabs(): | |
| with gr.TabItem("Object Detection"): | |
| with gr.Row(): | |
| inputs_img = gr.Image(image_mode="RGB", type="filepath", label="original image") | |
| with gr.Row(): | |
| # device_opt = gr.Radio(choices=["cpu", "0", "1", "2", "3"], value="cpu", label="device") | |
| device_opt = gr.Radio(choices=["cpu", "gpu 0", "gpu 1", "gpu 2", "gpu 3"], value="cpu", | |
| label="device") | |
| with gr.Row(): | |
| inputs_model = gr.Dropdown(choices=model_names, value=model_name, type="value", | |
| label="model") | |
| with gr.Row(): | |
| inputs_size = gr.Slider(320, 1600, step=1, value=inference_size, label="inference size") | |
| max_det = gr.Slider(1, 100, step=1, value=max_detnum, label="max bbox number") | |
| with gr.Row(): | |
| input_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="confidence threshold") | |
| inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold") | |
| with gr.Row(): | |
| obj_size = gr.Radio(choices=["all range", "small", "medium", "large"], value="all range", | |
| label="cell size(relative)") | |
| with gr.Row(): | |
| gr.ClearButton(inputs_img, value="clear") | |
| det_btn_img = gr.Button(value='submit', variant="primary") | |
| with gr.Row(): | |
| gr.Examples(examples=EXAMPLES_DET, | |
| fn=yolo_det_img, | |
| inputs=[inputs_img, inputs_model, device_opt, inputs_size, input_conf, | |
| inputs_iou, max_det, obj_size], | |
| # outputs=[outputs_img, outputs_objSize, outputs_clsSize], | |
| cache_examples=False) | |
| with gr.Column(scale=1): | |
| with gr.Tabs(): | |
| with gr.TabItem("Object Detection"): | |
| with gr.Row(): | |
| outputs_img = gr.Image(type="pil", label="detection results") | |
| with gr.Row(): | |
| outputs_objSize = gr.Label(label="Percentage Statistics of cells size(relative)") | |
| with gr.Row(): | |
| outputs_clsSize = gr.Label(label="Percentage Statistics of cells lesion degree") | |
| det_btn_img.click(fn=yolo_det_img, | |
| inputs=[ | |
| inputs_img, inputs_model, device_opt, inputs_size, input_conf, inputs_iou, max_det, | |
| obj_size], | |
| outputs=[outputs_img, outputs_objSize, outputs_clsSize]) | |
| return gyd | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| gyd = main(args) | |
| is_share = args.is_share | |
| gyd.queue().launch( | |
| inbrowser=True, # 自动打开默认浏览器 | |
| share=is_share, # 项目共享,其他设备可以访问 | |
| favicon_path="favicons/logo.ico", # 网页图标 | |
| show_error=True, # 在浏览器控制台中显示错误信息 | |
| quiet=True, # 禁止大多数打印语句 | |
| ) | |