TruthLens commited on
Commit
d9d507c
·
verified ·
1 Parent(s): d9974cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -63
app.py CHANGED
@@ -4,6 +4,7 @@ from PIL import Image
4
  import torch
5
  from torchvision import models, transforms
6
  import requests
 
7
 
8
  app = Flask(__name__)
9
 
@@ -20,10 +21,13 @@ imagenet_class_labels = response.json()
20
  resnet50_model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
21
  resnet50_model.eval()
22
 
23
- # Load ResNet18 for AI vs. Human detection (Use custom-trained weights if available)
24
  resnet18_model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
25
  resnet18_model.eval()
26
 
 
 
 
27
  # Image transformation pipeline
28
  transform = transforms.Compose([
29
  transforms.Resize((224, 224)),
@@ -31,62 +35,43 @@ transform = transforms.Compose([
31
  transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
32
  ])
33
 
34
- # HTML Template with improved UI and interpretation
35
  HTML_TEMPLATE = """
36
  <!DOCTYPE html>
37
  <html lang="en">
38
  <head>
39
  <meta charset="UTF-8">
40
- <title>AI & Image Detection</title>
41
  <style>
42
  body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
43
  .container { background: white; padding: 30px; border-radius: 12px; max-width: 750px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }
44
  h1, h2 { color: #333; }
45
- textarea, input[type="file"] { width: 100%; padding: 12px; margin-top: 10px; border-radius: 8px; border: 1px solid #ccc; }
46
  button { background-color: #4CAF50; color: white; border: none; padding: 12px 20px; border-radius: 8px; cursor: pointer; font-size: 16px; }
47
  button:hover { background-color: #45a049; }
48
  .result { background: #e7f3fe; padding: 15px; border-radius: 10px; margin-top: 20px; }
49
- ul { text-align: left; }
50
  </style>
51
  </head>
52
  <body>
53
  <div class="container">
54
- <h1>📰 Fake News & Image Detection</h1>
55
  <form method="POST" action="/detect">
56
  <textarea name="text" placeholder="Enter news text..." required></textarea>
57
  <button type="submit">Detect News Authenticity</button>
58
  </form>
59
 
60
- <h1>🖼️ Upload Image for Detection</h1>
61
- <form method="POST" action="/detect_image" enctype="multipart/form-data">
62
- <input type="file" name="image" required>
63
- <button type="submit">Upload and Analyze</button>
64
- </form>
65
-
66
- <div style="margin-top: 30px;">
67
- <h2>🤖 What is ResNet50?</h2>
68
- <p>ResNet50 is a 50-layer deep convolutional neural network designed for image classification tasks. It can recognize thousands of objects from the ImageNet dataset.</p>
69
- </div>
70
-
71
- {% if ai_prediction %}
72
  <div class="result">
73
- <h2>🧠 AI vs. Human Detection Result:</h2>
74
- <p>{{ ai_prediction }}</p>
75
- <p><strong>Interpretation:</strong> This result indicates whether the uploaded image was likely created by AI or a human. Higher confidence suggests stronger model certainty.</p>
76
  </div>
77
  {% endif %}
78
 
79
- {% if classification_results %}
80
- <div class="result">
81
- <h2>📦 Object Classification Results (ResNet50):</h2>
82
- <ul>
83
- {% for result in classification_results %}
84
- <li>• {{ result.label }} ({{ (result.score * 100) | round(2) }}%) - Detected object category.</li>
85
- {% endfor %}
86
- </ul>
87
- <p><strong>Interpretation:</strong> The model predicts the most probable object categories in the uploaded image along with confidence scores. Higher percentages indicate stronger matches.</p>
88
  </div>
89
- {% endif %}
90
  </div>
91
  </body>
92
  </html>
@@ -99,43 +84,21 @@ def home():
99
  @app.route("/detect", methods=["POST"])
100
  def detect():
101
  text = request.form.get("text")
102
- final_label = "REAL" if "trusted" in text.lower() else "FAKE" # Placeholder logic
103
- return render_template_string(HTML_TEMPLATE, ai_prediction=f"News is {final_label}.", classification_results=None)
104
-
105
- @app.route("/detect_image", methods=["POST"])
106
- def detect_image():
107
- if "image" not in request.files:
108
- return "No image uploaded.", 400
109
-
110
- file = request.files["image"]
111
- img_path = os.path.join(upload_folder, file.filename)
112
- file.save(img_path)
113
-
114
- img = Image.open(img_path).convert("RGB")
115
- img_tensor = transform(img).unsqueeze(0)
116
-
117
- # AI vs. Human detection
118
- with torch.no_grad():
119
- ai_output = resnet18_model(img_tensor)
120
- ai_confidence = torch.softmax(ai_output, dim=1).max().item()
121
- ai_label = "AI-Generated" if ai_confidence > 0.55 else "Human-Created"
122
-
123
- # Object classification with ResNet50
124
- with torch.no_grad():
125
- outputs = resnet50_model(img_tensor)
126
- probs = torch.softmax(outputs, dim=1)[0]
127
- top5_probs, top5_indices = torch.topk(probs, 5)
128
- classification_results = [
129
- {"label": imagenet_class_labels[idx], "score": prob.item()} for idx, prob in zip(top5_indices, top5_probs)
130
- ]
131
 
132
  return render_template_string(
133
  HTML_TEMPLATE,
134
- ai_prediction=f"{ai_label} (Confidence: {(ai_confidence * 100):.2f}%)",
135
- classification_results=classification_results
136
  )
137
 
138
  if __name__ == "__main__":
139
- app.run(host="0.0.0.0", port=7860) # Updated for Hugging Face Spaces (no ngrok required)
 
140
 
141
 
 
4
  import torch
5
  from torchvision import models, transforms
6
  import requests
7
+ from transformers import pipeline
8
 
9
  app = Flask(__name__)
10
 
 
21
  resnet50_model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
22
  resnet50_model.eval()
23
 
24
+ # Load ResNet18 for AI vs. Human detection
25
  resnet18_model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
26
  resnet18_model.eval()
27
 
28
+ # Load fake news detection model from Hugging Face
29
+ news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
30
+
31
  # Image transformation pipeline
32
  transform = transforms.Compose([
33
  transforms.Resize((224, 224)),
 
35
  transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
36
  ])
37
 
38
+ # HTML Template with improved UI
39
  HTML_TEMPLATE = """
40
  <!DOCTYPE html>
41
  <html lang="en">
42
  <head>
43
  <meta charset="UTF-8">
44
+ <title>AI & News Detection</title>
45
  <style>
46
  body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
47
  .container { background: white; padding: 30px; border-radius: 12px; max-width: 750px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }
48
  h1, h2 { color: #333; }
49
+ textarea { width: 100%; padding: 12px; margin-top: 10px; border-radius: 8px; border: 1px solid #ccc; }
50
  button { background-color: #4CAF50; color: white; border: none; padding: 12px 20px; border-radius: 8px; cursor: pointer; font-size: 16px; }
51
  button:hover { background-color: #45a049; }
52
  .result { background: #e7f3fe; padding: 15px; border-radius: 10px; margin-top: 20px; }
 
53
  </style>
54
  </head>
55
  <body>
56
  <div class="container">
57
+ <h1>📰 Fake News Detection</h1>
58
  <form method="POST" action="/detect">
59
  <textarea name="text" placeholder="Enter news text..." required></textarea>
60
  <button type="submit">Detect News Authenticity</button>
61
  </form>
62
 
63
+ {% if news_prediction %}
 
 
 
 
 
 
 
 
 
 
 
64
  <div class="result">
65
+ <h2>🧠 News Detection Result:</h2>
66
+ <p>{{ news_prediction }}</p>
67
+ <p><strong>Interpretation:</strong> This result indicates whether the submitted news text is likely real or fake. Higher confidence suggests stronger model certainty.</p>
68
  </div>
69
  {% endif %}
70
 
71
+ <div style="margin-top: 30px;">
72
+ <h2>🤖 What is ResNet50?</h2>
73
+ <p>ResNet50 is a 50-layer deep convolutional neural network designed for image classification tasks. It can recognize thousands of objects from the ImageNet dataset.</p>
 
 
 
 
 
 
74
  </div>
 
75
  </div>
76
  </body>
77
  </html>
 
84
  @app.route("/detect", methods=["POST"])
85
  def detect():
86
  text = request.form.get("text")
87
+ if not text:
88
+ return render_template_string(HTML_TEMPLATE, news_prediction="No text provided.")
89
+
90
+ # Use the model for prediction
91
+ result = news_classifier(text)[0]
92
+ label = "REAL" if result['label'] == "LABEL_1" else "FAKE"
93
+ confidence = result['score'] * 100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
  return render_template_string(
96
  HTML_TEMPLATE,
97
+ news_prediction=f"News is {label} (Confidence: {confidence:.2f}%)"
 
98
  )
99
 
100
  if __name__ == "__main__":
101
+ app.run(host="0.0.0.0", port=7860) # Suitable for Hugging Face Spaces
102
+
103
 
104