Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ from PIL import Image
|
|
4 |
import torch
|
5 |
from torchvision import models, transforms
|
6 |
import requests
|
|
|
7 |
|
8 |
app = Flask(__name__)
|
9 |
|
@@ -20,10 +21,13 @@ imagenet_class_labels = response.json()
|
|
20 |
resnet50_model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
|
21 |
resnet50_model.eval()
|
22 |
|
23 |
-
# Load ResNet18 for AI vs. Human detection
|
24 |
resnet18_model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
|
25 |
resnet18_model.eval()
|
26 |
|
|
|
|
|
|
|
27 |
# Image transformation pipeline
|
28 |
transform = transforms.Compose([
|
29 |
transforms.Resize((224, 224)),
|
@@ -31,62 +35,43 @@ transform = transforms.Compose([
|
|
31 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
32 |
])
|
33 |
|
34 |
-
# HTML Template with improved UI
|
35 |
HTML_TEMPLATE = """
|
36 |
<!DOCTYPE html>
|
37 |
<html lang="en">
|
38 |
<head>
|
39 |
<meta charset="UTF-8">
|
40 |
-
<title>AI &
|
41 |
<style>
|
42 |
body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
|
43 |
.container { background: white; padding: 30px; border-radius: 12px; max-width: 750px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }
|
44 |
h1, h2 { color: #333; }
|
45 |
-
textarea
|
46 |
button { background-color: #4CAF50; color: white; border: none; padding: 12px 20px; border-radius: 8px; cursor: pointer; font-size: 16px; }
|
47 |
button:hover { background-color: #45a049; }
|
48 |
.result { background: #e7f3fe; padding: 15px; border-radius: 10px; margin-top: 20px; }
|
49 |
-
ul { text-align: left; }
|
50 |
</style>
|
51 |
</head>
|
52 |
<body>
|
53 |
<div class="container">
|
54 |
-
<h1>📰 Fake News
|
55 |
<form method="POST" action="/detect">
|
56 |
<textarea name="text" placeholder="Enter news text..." required></textarea>
|
57 |
<button type="submit">Detect News Authenticity</button>
|
58 |
</form>
|
59 |
|
60 |
-
|
61 |
-
<form method="POST" action="/detect_image" enctype="multipart/form-data">
|
62 |
-
<input type="file" name="image" required>
|
63 |
-
<button type="submit">Upload and Analyze</button>
|
64 |
-
</form>
|
65 |
-
|
66 |
-
<div style="margin-top: 30px;">
|
67 |
-
<h2>🤖 What is ResNet50?</h2>
|
68 |
-
<p>ResNet50 is a 50-layer deep convolutional neural network designed for image classification tasks. It can recognize thousands of objects from the ImageNet dataset.</p>
|
69 |
-
</div>
|
70 |
-
|
71 |
-
{% if ai_prediction %}
|
72 |
<div class="result">
|
73 |
-
<h2>🧠
|
74 |
-
<p>{{
|
75 |
-
<p><strong>Interpretation:</strong> This result indicates whether the
|
76 |
</div>
|
77 |
{% endif %}
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
<
|
82 |
-
<ul>
|
83 |
-
{% for result in classification_results %}
|
84 |
-
<li>• {{ result.label }} ({{ (result.score * 100) | round(2) }}%) - Detected object category.</li>
|
85 |
-
{% endfor %}
|
86 |
-
</ul>
|
87 |
-
<p><strong>Interpretation:</strong> The model predicts the most probable object categories in the uploaded image along with confidence scores. Higher percentages indicate stronger matches.</p>
|
88 |
</div>
|
89 |
-
{% endif %}
|
90 |
</div>
|
91 |
</body>
|
92 |
</html>
|
@@ -99,43 +84,21 @@ def home():
|
|
99 |
@app.route("/detect", methods=["POST"])
|
100 |
def detect():
|
101 |
text = request.form.get("text")
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
if "
|
108 |
-
|
109 |
-
|
110 |
-
file = request.files["image"]
|
111 |
-
img_path = os.path.join(upload_folder, file.filename)
|
112 |
-
file.save(img_path)
|
113 |
-
|
114 |
-
img = Image.open(img_path).convert("RGB")
|
115 |
-
img_tensor = transform(img).unsqueeze(0)
|
116 |
-
|
117 |
-
# AI vs. Human detection
|
118 |
-
with torch.no_grad():
|
119 |
-
ai_output = resnet18_model(img_tensor)
|
120 |
-
ai_confidence = torch.softmax(ai_output, dim=1).max().item()
|
121 |
-
ai_label = "AI-Generated" if ai_confidence > 0.55 else "Human-Created"
|
122 |
-
|
123 |
-
# Object classification with ResNet50
|
124 |
-
with torch.no_grad():
|
125 |
-
outputs = resnet50_model(img_tensor)
|
126 |
-
probs = torch.softmax(outputs, dim=1)[0]
|
127 |
-
top5_probs, top5_indices = torch.topk(probs, 5)
|
128 |
-
classification_results = [
|
129 |
-
{"label": imagenet_class_labels[idx], "score": prob.item()} for idx, prob in zip(top5_indices, top5_probs)
|
130 |
-
]
|
131 |
|
132 |
return render_template_string(
|
133 |
HTML_TEMPLATE,
|
134 |
-
|
135 |
-
classification_results=classification_results
|
136 |
)
|
137 |
|
138 |
if __name__ == "__main__":
|
139 |
-
app.run(host="0.0.0.0", port=7860) #
|
|
|
140 |
|
141 |
|
|
|
4 |
import torch
|
5 |
from torchvision import models, transforms
|
6 |
import requests
|
7 |
+
from transformers import pipeline
|
8 |
|
9 |
app = Flask(__name__)
|
10 |
|
|
|
21 |
resnet50_model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
|
22 |
resnet50_model.eval()
|
23 |
|
24 |
+
# Load ResNet18 for AI vs. Human detection
|
25 |
resnet18_model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
|
26 |
resnet18_model.eval()
|
27 |
|
28 |
+
# Load fake news detection model from Hugging Face
|
29 |
+
news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
|
30 |
+
|
31 |
# Image transformation pipeline
|
32 |
transform = transforms.Compose([
|
33 |
transforms.Resize((224, 224)),
|
|
|
35 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
36 |
])
|
37 |
|
38 |
+
# HTML Template with improved UI
|
39 |
HTML_TEMPLATE = """
|
40 |
<!DOCTYPE html>
|
41 |
<html lang="en">
|
42 |
<head>
|
43 |
<meta charset="UTF-8">
|
44 |
+
<title>AI & News Detection</title>
|
45 |
<style>
|
46 |
body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
|
47 |
.container { background: white; padding: 30px; border-radius: 12px; max-width: 750px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }
|
48 |
h1, h2 { color: #333; }
|
49 |
+
textarea { width: 100%; padding: 12px; margin-top: 10px; border-radius: 8px; border: 1px solid #ccc; }
|
50 |
button { background-color: #4CAF50; color: white; border: none; padding: 12px 20px; border-radius: 8px; cursor: pointer; font-size: 16px; }
|
51 |
button:hover { background-color: #45a049; }
|
52 |
.result { background: #e7f3fe; padding: 15px; border-radius: 10px; margin-top: 20px; }
|
|
|
53 |
</style>
|
54 |
</head>
|
55 |
<body>
|
56 |
<div class="container">
|
57 |
+
<h1>📰 Fake News Detection</h1>
|
58 |
<form method="POST" action="/detect">
|
59 |
<textarea name="text" placeholder="Enter news text..." required></textarea>
|
60 |
<button type="submit">Detect News Authenticity</button>
|
61 |
</form>
|
62 |
|
63 |
+
{% if news_prediction %}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
<div class="result">
|
65 |
+
<h2>🧠 News Detection Result:</h2>
|
66 |
+
<p>{{ news_prediction }}</p>
|
67 |
+
<p><strong>Interpretation:</strong> This result indicates whether the submitted news text is likely real or fake. Higher confidence suggests stronger model certainty.</p>
|
68 |
</div>
|
69 |
{% endif %}
|
70 |
|
71 |
+
<div style="margin-top: 30px;">
|
72 |
+
<h2>🤖 What is ResNet50?</h2>
|
73 |
+
<p>ResNet50 is a 50-layer deep convolutional neural network designed for image classification tasks. It can recognize thousands of objects from the ImageNet dataset.</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
</div>
|
|
|
75 |
</div>
|
76 |
</body>
|
77 |
</html>
|
|
|
84 |
@app.route("/detect", methods=["POST"])
|
85 |
def detect():
|
86 |
text = request.form.get("text")
|
87 |
+
if not text:
|
88 |
+
return render_template_string(HTML_TEMPLATE, news_prediction="No text provided.")
|
89 |
+
|
90 |
+
# Use the model for prediction
|
91 |
+
result = news_classifier(text)[0]
|
92 |
+
label = "REAL" if result['label'] == "LABEL_1" else "FAKE"
|
93 |
+
confidence = result['score'] * 100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
return render_template_string(
|
96 |
HTML_TEMPLATE,
|
97 |
+
news_prediction=f"News is {label} (Confidence: {confidence:.2f}%)"
|
|
|
98 |
)
|
99 |
|
100 |
if __name__ == "__main__":
|
101 |
+
app.run(host="0.0.0.0", port=7860) # Suitable for Hugging Face Spaces
|
102 |
+
|
103 |
|
104 |
|