''' ART Gradio Example App [Evasion] To run: - clone the repository - execute: gradio examples/gradio_app.py or python examples/gradio_app.py - navigate to local URL e.g. http://127.0.0.1:7860 ''' import gradio as gr import numpy as np from carbon_theme import Carbon import numpy as np import torch import transformers from art.estimators.classification.hugging_face import HuggingFaceClassifierPyTorch from art.attacks.evasion import ProjectedGradientDescentPyTorch, AdversarialPatchPyTorch from art.utils import load_dataset from art.attacks.poisoning import PoisoningAttackBackdoor from art.attacks.poisoning.perturbations import insert_image device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') css = """ .custom-text { --text-md: 20px !important; --text-sm: 18px !important; --block-info-text-size: var(--text-sm); --block-label-text-size: var(--text-sm); --block-title-text-size: var(--text-md); --body-text-size: var(--text-md); --button-small-text-size: var(--text-md); --checkbox-label-text-size: var(--text-md); --input-text-size: var(--text-md); --prose-text-size: var(--text-md); --section-header-text-size: var(--text-md); } .input-image { margin: auto !important } .plot-padding { padding: 20px; } .eta-bar.svelte-1occ011.svelte-1occ011 { background: #ccccff !important; } .center-text { text-align: center !important } .larger-gap { gap: 100px !important; } .symbols { text-align: center !important; margin: auto !important; } .eval-bt { background-color: #3b74f4 !important; color: white !important; } .cust-width { min-width: 250px !important;} """ global model model = transformers.AutoModelForImageClassification.from_pretrained( 'facebook/deit-tiny-distilled-patch16-224', ignore_mismatched_sizes=True, num_labels=10 ) def default_clean(): return [('./data/default/clean/0_fish.png', 'fish'), ('./data/default/clean/1_fish.png', 'fish'), ('./data/default/clean/2_fish.png', 'church'), ('./data/default/clean/3_fish.png', 'fish'), ('./data/default/clean/4_fish.png', 'church'), ('./data/default/clean/5_fish.png', 'fish'), ('./data/default/clean/6_fish.png', 'fish'), ('./data/default/clean/7_fish.png', 'fish')] def default_poisoned(): return [('./data/default/poisoned/0_fish.png', 'church'), ('./data/default/poisoned/1_fish.png', 'church'), ('./data/default/poisoned/2_fish.png', 'church'), ('./data/default/poisoned/3_fish.png', 'church'), ('./data/default/poisoned/4_fish.png', 'church'), ('./data/default/poisoned/5_fish.png', 'church'), ('./data/default/poisoned/6_fish.png', 'church'), ('./data/default/poisoned/7_fish.png', 'church')] def sample_imagenette(): import torchvision label_names = [ 'fish', 'dog', 'cassette player', 'chainsaw', 'church', 'french horn', 'garbage truck', 'gas pump', 'golf ball', 'parachutte', ] transform = torchvision.transforms.Compose([ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), ]) train_dataset = torchvision.datasets.ImageFolder(root="./data/imagenette2-320/train", transform=transform) labels = np.asarray(train_dataset.targets) classes = np.unique(labels) samples_per_class = 1 x_subset = [] y_subset = [] for c in classes: indices = np.where(labels == c)[0][:samples_per_class] for i in indices: x_subset.append(train_dataset[i][0]) y_subset.append(train_dataset[i][1]) x_subset = np.stack(x_subset) y_subset = np.asarray(y_subset) gallery_out = [] for i, im in enumerate(x_subset): gallery_out.append( (im.transpose(1,2,0), label_names[y_subset[i]]) ) return gallery_out def clf_poison_evaluate(*args): label_names = [ 'fish', 'dog', 'cassette player', 'chainsaw', 'church', 'french horn', 'garbage truck', 'gas pump', 'golf ball', 'parachutte', ] attack = args[0] trigger_image = args[1] target_class = args[2] target_class = label_names.index(target_class) optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) loss_fn = torch.nn.CrossEntropyLoss() poison_hf_model = HuggingFaceClassifierPyTorch( model=model, loss=loss_fn, optimizer=optimizer, input_shape=(3, 224, 224), nb_classes=10, clip_values=(0, 1), ) model_checkpoint_path = './poisoned_models/deit_imagenette_poisoned_model_'+str(target_class)+'.pt' poison_hf_model.model.load_state_dict(torch.load(model_checkpoint_path, map_location=device)) import torchvision transform = torchvision.transforms.Compose([ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), ]) train_dataset = torchvision.datasets.ImageFolder(root="./data/imagenette2-320/train", transform=transform) labels = np.asarray(train_dataset.targets) classes = np.unique(labels) samples_per_class = 20 x_subset = [] y_subset = [] for c in classes: indices = np.where(labels == c)[0][:samples_per_class] for i in indices: x_subset.append(train_dataset[i][0]) y_subset.append(train_dataset[i][1]) x_subset = np.stack(x_subset) y_subset = np.asarray(y_subset) if attack == "Backdoor": from PIL import Image im = Image.fromarray(trigger_image) im.save("./tmp.png") def poison_func(x): return insert_image( x, backdoor_path='./baby-on-board.png', channels_first=True, random=False, x_shift=0, y_shift=0, size=(32, 32), mode='RGB', blend=0.8 ) backdoor = PoisoningAttackBackdoor(poison_func) source_class = 0 poison_percent = 0.5 x_poison = np.copy(x_subset) y_poison = np.copy(y_subset) is_poison = np.zeros(len(x_subset)).astype(bool) indices = np.where(y_subset == source_class)[0] num_poison = int(poison_percent * len(indices)) for i in indices[:num_poison]: x_poison[i], _ = backdoor.poison(x_poison[i], []) y_poison[i] = target_class is_poison[i] = True poison_indices = np.where(is_poison)[0] #poison_hf_model.fit(x_poison, y_poison, nb_epochs=2) clean_x = x_poison[~is_poison] clean_y = y_poison[~is_poison] outputs = poison_hf_model.predict(clean_x) clean_preds = np.argmax(outputs, axis=1) clean_acc = np.mean(clean_preds == clean_y) clean_out = [] for i, im in enumerate(clean_x): clean_out.append( (im.transpose(1,2,0), label_names[clean_preds[i]]) ) poison_x = x_poison[is_poison] poison_y = y_poison[is_poison] outputs = poison_hf_model.predict(poison_x) poison_preds = np.argmax(outputs, axis=1) poison_acc = np.mean(poison_preds == poison_y) poison_out = [] for i, im in enumerate(poison_x): poison_out.append( (im.transpose(1,2,0), label_names[poison_preds[i]]) ) return clean_out, poison_out, clean_acc, poison_acc def show_params(type): ''' Show model parameters based on selected model type ''' if type!="Example": return gr.Column(visible=True) return gr.Column(visible=False) # head = f'''''' # e.g. To use a local alternative theme: carbon_theme = Carbon() carbon_theme = Carbon() with gr.Blocks(css=css, theme='Tshackelton/IBMPlex-DenseReadable') as demo: import art text = art.__version__ with gr.Row(elem_classes="custom-text"): with gr.Column(scale=1,): gr.Image(value="./art_lfai.png", show_label=False, show_download_button=False, width=100, show_share_button=False) with gr.Column(scale=2): gr.Markdown(f"
âšī¸ Red-teaming in AI is an activity where we masquerade as evil attackers đ and attempt to find vulnerabilities in our AI models. Identifying scenarios where our AI models do not work as expected, or fail, is important as it helps us better understand its limitations and vulnerability when deployed in the real world đ§
''') gr.Markdown('''âšī¸ By attacking our AI models ourselves, we can better the risks associated with use in the real world and implement mechanisms which can mitigate and protect our model. The example below demonstrates a common red-team workflow to assess model vulnerability to data poisoning attacks đ§Ē
''') gr.Markdown('''Check out the full suite of features provided by ART here. To dive further into poisoning attacks with Hugging Face and ART, check out our notebook. Also feel free to contribute and give our repo a â.
''') '''gr.Markdown()''' gr.Markdown('''âšī¸ First lets set the scene. You have a dataset of images, such as Imagenette.
''') gr.Markdown('''Note: Imagenette is a subset of 10 easily classified classes from Imagenet as shown.
''') gr.Markdown('''âšī¸ Your goal is to have an AI model capable of classifying these images. So you find a pre-trained model from Hugging Face, such as Meta's Distilled Data-efficient Image Transformer, which has been trained on this data (or so you think â ī¸).
''') with gr.Column(scale=1, elem_classes="cust-width"): gr.Markdown('''Hugging Face dataset: Imagenette
Imagenette labels: {fish, dog, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute}
Hugging Face model:
facebook/deit-tiny-distilled-patch16-224
đ take a look at the sample images from the Imagenette dataset and their respective labels.
''') with gr.Column(scale=1, elem_classes="cust-width"): gr.Gallery(label="Imagenette", preview=False, value=sample_imagenette(), height=420) gr.Markdown('''âšī¸ Now as a responsible AI expert, you wish to assert that your model is not vulnerable to attacks which might manipulate the prediction. For instance, fish become classified as dogs or golf balls. To do this, you will deploy a backdoor poisoning attack against your own model and assess its performance. Click the button below đ to evaluate a poisoned model.
''') with gr.Row(elem_classes="custom-text"): with gr.Column(scale=6): attack = gr.Textbox(visible=True, value="Backdoor", label="Attack", interactive=False) target_class = gr.Radio(label="Target class", info="The class you wish to force the model to predict.", choices=['church', 'cassette player', 'chainsaw', 'dog', 'french horn', 'garbage truck', 'gas pump', 'golf ball', 'parachutte',], value='church') eval_btn_patch = gr.Button("Evaluate â¨", elem_classes="eval-bt") with gr.Column(scale=10): clean_gallery = gr.Gallery(default_clean(), label="Clean", preview=False, show_download_button=True, height=600) clean_accuracy = gr.Number(0.97, label="Clean Accuracy", precision=2, info="The percent of correctly classified images without trigger.") with gr.Column(scale=1, min_width=0, elem_classes='symbols'): gr.Markdown('''â''') with gr.Column(scale=3, elem_classes='symbols'): trigger_image = gr.Image(label="Trigger", value="./baby-on-board.png", interactive=False) with gr.Column(scale=1, min_width=0): gr.Markdown('''đ°''', elem_classes='symbols') with gr.Column(scale=10): poison_gallery = gr.Gallery(default_poisoned(), label="Poisoned", preview=False, show_download_button=True, height=600) poison_success = gr.Number(1.0, label="Poison Success", precision=2, info="The percent of images with trigger classified as the target.") eval_btn_patch.click(clf_poison_evaluate, inputs=[attack, trigger_image, target_class], outputs=[clean_gallery, poison_gallery, clean_accuracy, poison_success]) gr.Markdown('''â ī¸ Want to try out a poisoning attack with your own model and data? Run our notebooks!
''') gr.Markdown('''