Gaussian-Shading-watermark / inverse_stable_diffusion.py
TruongScotl's picture
Upload 7 files
f961e67 verified
from functools import partial
from typing import Callable, List, Optional, Union, Tuple
import torch
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNet2DConditionModel
# from diffusers import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import \
StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler,PNDMScheduler, LMSDiscreteScheduler
from modified_stable_diffusion import ModifiedStableDiffusionPipeline
from torchvision.transforms import ToPILImage
import matplotlib.pyplot as plt
### credit to: https://github.com/cccntu/efficient-prompt-to-prompt
def backward_ddim(x_t, alpha_t, alpha_tm1, eps_xt):
""" from noise to image"""
return (
alpha_tm1**0.5
* (
(alpha_t**-0.5 - alpha_tm1**-0.5) * x_t
+ ((1 / alpha_tm1 - 1) ** 0.5 - (1 / alpha_t - 1) ** 0.5) * eps_xt
)
+ x_t
)
def forward_ddim(x_t, alpha_t, alpha_tp1, eps_xt):
""" from image to noise, it's the same as backward_ddim"""
return backward_ddim(x_t, alpha_t, alpha_tp1, eps_xt)
class InversableStableDiffusionPipeline(ModifiedStableDiffusionPipeline):
def __init__(self,
vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker,
feature_extractor,
requires_safety_checker: bool = False,
):
super(InversableStableDiffusionPipeline, self).__init__(vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker,
feature_extractor,
requires_safety_checker)
self.forward_diffusion = partial(self.backward_diffusion, reverse_process=True)
self.count = 0
def get_random_latents(self, latents=None, height=512, width=512, generator=None):
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
batch_size = 1
device = self._execution_device
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size,
num_channels_latents,
height,
width,
self.text_encoder.dtype,
device,
generator,
latents,
)
return latents
@torch.inference_mode()
def get_text_embedding(self, prompt):
text_input_ids = self.tokenizer(
prompt,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
return text_embeddings
@torch.inference_mode()
def get_image_latents(self, image, sample=True, rng_generator=None):
encoding_dist = self.vae.encode(image).latent_dist
if sample:
encoding = encoding_dist.sample(generator=rng_generator)
else:
encoding = encoding_dist.mode()
latents = encoding * 0.18215
return latents
@torch.inference_mode()
def backward_diffusion(
self,
use_old_emb_i=25,
text_embeddings=None,
old_text_embeddings=None,
new_text_embeddings=None,
latents: Optional[torch.FloatTensor] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
reverse_process: True = False,
**kwargs,
):
""" Generate image from text prompt and latents
"""
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# set timesteps
self.scheduler.set_timesteps(num_inference_steps)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
if old_text_embeddings is not None and new_text_embeddings is not None:
prompt_to_prompt = True
else:
prompt_to_prompt = False
for i, t in enumerate(self.progress_bar(timesteps_tensor if not reverse_process else reversed(timesteps_tensor))):
if prompt_to_prompt:
if i < use_old_emb_i:
text_embeddings = old_text_embeddings
else:
text_embeddings = new_text_embeddings
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=text_embeddings
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
prev_timestep = (
t
- self.scheduler.config.num_train_timesteps
// self.scheduler.num_inference_steps
)
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# ddim
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
if reverse_process:
alpha_prod_t, alpha_prod_t_prev = alpha_prod_t_prev, alpha_prod_t
latents = backward_ddim(
x_t=latents,
alpha_t=alpha_prod_t,
alpha_tm1=alpha_prod_t_prev,
eps_xt=noise_pred,
)
return latents
@torch.inference_mode()
def decode_image(self, latents: torch.FloatTensor, **kwargs):
scaled_latents = 1 / 0.18215 * latents
image = [
self.vae.decode(scaled_latents[i : i + 1]).sample for i in range(len(latents))
]
image = torch.cat(image, dim=0)
return image
@torch.inference_mode()
def torch_to_numpy(self, image):
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
return image