|
from functools import partial |
|
from typing import Callable, List, Optional, Union, Tuple |
|
|
|
import torch |
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import \ |
|
StableDiffusionSafetyChecker |
|
from diffusers.schedulers import DDIMScheduler,PNDMScheduler, LMSDiscreteScheduler |
|
|
|
from modified_stable_diffusion import ModifiedStableDiffusionPipeline |
|
from torchvision.transforms import ToPILImage |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
def backward_ddim(x_t, alpha_t, alpha_tm1, eps_xt): |
|
""" from noise to image""" |
|
return ( |
|
alpha_tm1**0.5 |
|
* ( |
|
(alpha_t**-0.5 - alpha_tm1**-0.5) * x_t |
|
+ ((1 / alpha_tm1 - 1) ** 0.5 - (1 / alpha_t - 1) ** 0.5) * eps_xt |
|
) |
|
+ x_t |
|
) |
|
|
|
def forward_ddim(x_t, alpha_t, alpha_tp1, eps_xt): |
|
""" from image to noise, it's the same as backward_ddim""" |
|
return backward_ddim(x_t, alpha_t, alpha_tp1, eps_xt) |
|
|
|
|
|
class InversableStableDiffusionPipeline(ModifiedStableDiffusionPipeline): |
|
def __init__(self, |
|
vae, |
|
text_encoder, |
|
tokenizer, |
|
unet, |
|
scheduler, |
|
safety_checker, |
|
feature_extractor, |
|
requires_safety_checker: bool = False, |
|
): |
|
|
|
super(InversableStableDiffusionPipeline, self).__init__(vae, |
|
text_encoder, |
|
tokenizer, |
|
unet, |
|
scheduler, |
|
safety_checker, |
|
feature_extractor, |
|
requires_safety_checker) |
|
|
|
self.forward_diffusion = partial(self.backward_diffusion, reverse_process=True) |
|
self.count = 0 |
|
|
|
def get_random_latents(self, latents=None, height=512, width=512, generator=None): |
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
batch_size = 1 |
|
device = self._execution_device |
|
|
|
num_channels_latents = self.unet.in_channels |
|
|
|
latents = self.prepare_latents( |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
self.text_encoder.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
return latents |
|
|
|
@torch.inference_mode() |
|
def get_text_embedding(self, prompt): |
|
text_input_ids = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
).input_ids |
|
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0] |
|
return text_embeddings |
|
|
|
@torch.inference_mode() |
|
def get_image_latents(self, image, sample=True, rng_generator=None): |
|
encoding_dist = self.vae.encode(image).latent_dist |
|
if sample: |
|
encoding = encoding_dist.sample(generator=rng_generator) |
|
else: |
|
encoding = encoding_dist.mode() |
|
latents = encoding * 0.18215 |
|
return latents |
|
|
|
|
|
@torch.inference_mode() |
|
def backward_diffusion( |
|
self, |
|
use_old_emb_i=25, |
|
text_embeddings=None, |
|
old_text_embeddings=None, |
|
new_text_embeddings=None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
reverse_process: True = False, |
|
**kwargs, |
|
): |
|
""" Generate image from text prompt and latents |
|
""" |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
timesteps_tensor = self.scheduler.timesteps.to(self.device) |
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
if old_text_embeddings is not None and new_text_embeddings is not None: |
|
prompt_to_prompt = True |
|
else: |
|
prompt_to_prompt = False |
|
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps_tensor if not reverse_process else reversed(timesteps_tensor))): |
|
if prompt_to_prompt: |
|
if i < use_old_emb_i: |
|
text_embeddings = old_text_embeddings |
|
else: |
|
text_embeddings = new_text_embeddings |
|
|
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
) |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=text_embeddings |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
|
|
prev_timestep = ( |
|
t |
|
- self.scheduler.config.num_train_timesteps |
|
// self.scheduler.num_inference_steps |
|
) |
|
|
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
alpha_prod_t = self.scheduler.alphas_cumprod[t] |
|
alpha_prod_t_prev = ( |
|
self.scheduler.alphas_cumprod[prev_timestep] |
|
if prev_timestep >= 0 |
|
else self.scheduler.final_alpha_cumprod |
|
) |
|
if reverse_process: |
|
alpha_prod_t, alpha_prod_t_prev = alpha_prod_t_prev, alpha_prod_t |
|
latents = backward_ddim( |
|
x_t=latents, |
|
alpha_t=alpha_prod_t, |
|
alpha_tm1=alpha_prod_t_prev, |
|
eps_xt=noise_pred, |
|
) |
|
return latents |
|
|
|
|
|
@torch.inference_mode() |
|
def decode_image(self, latents: torch.FloatTensor, **kwargs): |
|
scaled_latents = 1 / 0.18215 * latents |
|
image = [ |
|
self.vae.decode(scaled_latents[i : i + 1]).sample for i in range(len(latents)) |
|
] |
|
image = torch.cat(image, dim=0) |
|
return image |
|
|
|
@torch.inference_mode() |
|
def torch_to_numpy(self, image): |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
return image |
|
|