Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
a16fe9a
1
Parent(s):
e080880
Initial commit for structure
Browse files- app.py +596 -0
- app.yaml +10 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import gspread
|
| 6 |
+
import pymongo
|
| 7 |
+
|
| 8 |
+
st.set_page_config(layout="wide")
|
| 9 |
+
|
| 10 |
+
@st.cache_resource
|
| 11 |
+
def init_conn():
|
| 12 |
+
|
| 13 |
+
uri = st.secrets['mongo_uri']
|
| 14 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
| 15 |
+
db = client["NBA_DFS"]
|
| 16 |
+
|
| 17 |
+
return db
|
| 18 |
+
|
| 19 |
+
db = init_conn()
|
| 20 |
+
|
| 21 |
+
dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
| 22 |
+
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
| 23 |
+
|
| 24 |
+
roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
|
| 25 |
+
|
| 26 |
+
@st.cache_data(ttl=60)
|
| 27 |
+
def load_overall_stats():
|
| 28 |
+
collection = db["DK_Player_Stats"]
|
| 29 |
+
cursor = collection.find()
|
| 30 |
+
|
| 31 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 32 |
+
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
| 33 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
| 34 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
| 35 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
| 36 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
| 37 |
+
dk_raw = raw_display.sort_values(by='Median', ascending=False)
|
| 38 |
+
|
| 39 |
+
collection = db["FD_Player_Stats"]
|
| 40 |
+
cursor = collection.find()
|
| 41 |
+
|
| 42 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 43 |
+
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
| 44 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
| 45 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
| 46 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
| 47 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
| 48 |
+
fd_raw = raw_display.sort_values(by='Median', ascending=False)
|
| 49 |
+
|
| 50 |
+
collection = db["Secondary_DK_Player_Stats"]
|
| 51 |
+
cursor = collection.find()
|
| 52 |
+
|
| 53 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 54 |
+
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
| 55 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
| 56 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
| 57 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
| 58 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
| 59 |
+
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
| 60 |
+
|
| 61 |
+
collection = db["Secondary_FD_Player_Stats"]
|
| 62 |
+
cursor = collection.find()
|
| 63 |
+
|
| 64 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 65 |
+
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
| 66 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
| 67 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
| 68 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
| 69 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
| 70 |
+
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
| 71 |
+
|
| 72 |
+
collection = db["Player_Range_Of_Outcomes"]
|
| 73 |
+
cursor = collection.find()
|
| 74 |
+
|
| 75 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 76 |
+
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
| 77 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']]
|
| 78 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
| 79 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
| 80 |
+
roo_raw = raw_display.sort_values(by='Median', ascending=False)
|
| 81 |
+
|
| 82 |
+
timestamp = raw_display['timestamp'].values[0]
|
| 83 |
+
|
| 84 |
+
collection = db["Range_Of_Outcomes_Backlog"]
|
| 85 |
+
cursor = collection.find()
|
| 86 |
+
|
| 87 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 88 |
+
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
| 89 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'Date']]
|
| 90 |
+
roo_backlog = raw_display.sort_values(by='Date', ascending=False)
|
| 91 |
+
roo_backlog = roo_backlog[roo_backlog['slate'] == 'Main Slate']
|
| 92 |
+
|
| 93 |
+
return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog
|
| 94 |
+
|
| 95 |
+
@st.cache_data(ttl = 60)
|
| 96 |
+
def init_DK_lineups():
|
| 97 |
+
|
| 98 |
+
collection = db['DK_NBA_name_map']
|
| 99 |
+
cursor = collection.find()
|
| 100 |
+
raw_data = pd.DataFrame(list(cursor))
|
| 101 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
| 102 |
+
|
| 103 |
+
collection = db["DK_NBA_seed_frame"]
|
| 104 |
+
cursor = collection.find().limit(10000)
|
| 105 |
+
|
| 106 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 107 |
+
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 108 |
+
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
|
| 109 |
+
for col in dict_columns:
|
| 110 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
| 111 |
+
DK_seed = raw_display.to_numpy()
|
| 112 |
+
|
| 113 |
+
return DK_seed
|
| 114 |
+
|
| 115 |
+
@st.cache_data(ttl = 60)
|
| 116 |
+
def init_FD_lineups():
|
| 117 |
+
|
| 118 |
+
collection = db['FD_NBA_name_map']
|
| 119 |
+
cursor = collection.find()
|
| 120 |
+
raw_data = pd.DataFrame(list(cursor))
|
| 121 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
| 122 |
+
|
| 123 |
+
collection = db["FD_NBA_seed_frame"]
|
| 124 |
+
cursor = collection.find().limit(10000)
|
| 125 |
+
|
| 126 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 127 |
+
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 128 |
+
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
|
| 129 |
+
for col in dict_columns:
|
| 130 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
| 131 |
+
FD_seed = raw_display.to_numpy()
|
| 132 |
+
|
| 133 |
+
return FD_seed
|
| 134 |
+
|
| 135 |
+
def convert_df_to_csv(df):
|
| 136 |
+
return df.to_csv().encode('utf-8')
|
| 137 |
+
|
| 138 |
+
@st.cache_data
|
| 139 |
+
def convert_df(array):
|
| 140 |
+
array = pd.DataFrame(array, columns=column_names)
|
| 141 |
+
return array.to_csv().encode('utf-8')
|
| 142 |
+
|
| 143 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
|
| 144 |
+
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
| 145 |
+
|
| 146 |
+
try:
|
| 147 |
+
dk_lineups = init_DK_lineups()
|
| 148 |
+
fd_lineups = init_FD_lineups()
|
| 149 |
+
except:
|
| 150 |
+
dk_lineups = pd.DataFrame(columns=dk_columns)
|
| 151 |
+
fd_lineups = pd.DataFrame(columns=fd_columns)
|
| 152 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 153 |
+
|
| 154 |
+
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
|
| 155 |
+
|
| 156 |
+
with st.sidebar:
|
| 157 |
+
st.header("Quick Builder")
|
| 158 |
+
st.info("This is a quick hand building helper to give you some basic info about player combos and lineup feasibility")
|
| 159 |
+
sidebar_site = st.selectbox("What site are you running?", ('Draftkings', 'Fanduel'), key='sidebar_site')
|
| 160 |
+
sidebar_slate = st.selectbox("What slate are you running?", ('Main Slate', 'Secondary Slate'), key='sidebar_slate')
|
| 161 |
+
|
| 162 |
+
if sidebar_site == 'Draftkings':
|
| 163 |
+
roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
|
| 164 |
+
roo_sample = roo_sample[roo_sample['site'] == 'Draftkings']
|
| 165 |
+
roo_sample = roo_sample.sort_values(by='Own', ascending=False)
|
| 166 |
+
selected_pg = []
|
| 167 |
+
selected_sg = []
|
| 168 |
+
selected_sf = []
|
| 169 |
+
selected_pf = []
|
| 170 |
+
selected_c = []
|
| 171 |
+
selected_g = []
|
| 172 |
+
selected_f = []
|
| 173 |
+
selected_flex = []
|
| 174 |
+
elif sidebar_site == 'Fanduel':
|
| 175 |
+
roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
|
| 176 |
+
roo_sample = roo_sample[roo_sample['site'] == 'Fanduel']
|
| 177 |
+
roo_sample = roo_sample.sort_values(by='Own', ascending=False)
|
| 178 |
+
selected_pg1 = []
|
| 179 |
+
selected_pg2 = []
|
| 180 |
+
selected_sg1 = []
|
| 181 |
+
selected_sg2 = []
|
| 182 |
+
selected_sf1 = []
|
| 183 |
+
selected_sf2 = []
|
| 184 |
+
selected_pf1 = []
|
| 185 |
+
selected_pf2 = []
|
| 186 |
+
selected_c1 = []
|
| 187 |
+
|
| 188 |
+
# Get unique players by position from dk_roo_raw
|
| 189 |
+
pgs = roo_sample[roo_sample['Position'].str.contains('PG')]['Player'].unique()
|
| 190 |
+
sgs = roo_sample[roo_sample['Position'].str.contains('SG')]['Player'].unique()
|
| 191 |
+
sfs = roo_sample[roo_sample['Position'].str.contains('SF')]['Player'].unique()
|
| 192 |
+
pfs = roo_sample[roo_sample['Position'].str.contains('PF')]['Player'].unique()
|
| 193 |
+
centers = roo_sample[roo_sample['Position'].str.contains('C')]['Player'].unique()
|
| 194 |
+
guards = roo_sample[roo_sample['Position'].str.contains('G')]['Player'].unique()
|
| 195 |
+
forwards = roo_sample[roo_sample['Position'].str.contains('F')]['Player'].unique()
|
| 196 |
+
flex = roo_sample['Player'].unique()
|
| 197 |
+
|
| 198 |
+
if sidebar_site == 'Draftkings':
|
| 199 |
+
selected_pgs = st.multiselect('Select PG:', list(pgs), default=None, placeholder='Select PG', label_visibility='collapsed', key='pg1')
|
| 200 |
+
selected_sgs = st.multiselect('Select SG:', list(sgs), default=None, placeholder='Select SG', label_visibility='collapsed', key='sg1')
|
| 201 |
+
selected_sfs = st.multiselect('Select SF:', list(sfs), default=None, placeholder='Select SF', label_visibility='collapsed', key='sf1')
|
| 202 |
+
selected_pfs = st.multiselect('Select PF:', list(pfs), default=None, placeholder='Select PF', label_visibility='collapsed', key='pf1')
|
| 203 |
+
selected_cs = st.multiselect('Select C:', list(centers), default=None, placeholder='Select C', label_visibility='collapsed', key='c1')
|
| 204 |
+
selected_g = st.multiselect('Select G:', list(guards), default=None, placeholder='Select G', label_visibility='collapsed', key='g')
|
| 205 |
+
selected_f = st.multiselect('Select F:', list(forwards), default=None, placeholder='Select F', label_visibility='collapsed', key='f')
|
| 206 |
+
selected_flex = st.multiselect('Select Flex:', list(flex), default=None, placeholder='Select Flex', label_visibility='collapsed', key='flex')
|
| 207 |
+
|
| 208 |
+
# Combine all selected players
|
| 209 |
+
all_selected = selected_pgs + selected_sgs + selected_sfs + selected_pfs + selected_cs + selected_g + selected_f + selected_flex
|
| 210 |
+
|
| 211 |
+
elif sidebar_site == 'Fanduel':
|
| 212 |
+
selected_pg1 = st.multiselect('Select PG1:', list(pgs), default=None, placeholder='Select PG1', label_visibility='collapsed', key='pg1')
|
| 213 |
+
selected_pg2 = st.multiselect('Select PG2:', list(pgs), default=None, placeholder='Select PG2', label_visibility='collapsed', key='pg2')
|
| 214 |
+
selected_sg1 = st.multiselect('Select SG1:', list(sgs), default=None, placeholder='Select SG1', label_visibility='collapsed', key='sg1')
|
| 215 |
+
selected_sg2 = st.multiselect('Select SG2:', list(sgs), default=None, placeholder='Select SG2', label_visibility='collapsed', key='sg2')
|
| 216 |
+
selected_sf1 = st.multiselect('Select SF1:', list(sfs), default=None, placeholder='Select SF1', label_visibility='collapsed', key='sf1')
|
| 217 |
+
selected_sf2 = st.multiselect('Select SF2:', list(sfs), default=None, placeholder='Select SF2', label_visibility='collapsed', key='sf2')
|
| 218 |
+
selected_pf1 = st.multiselect('Select PF1:', list(pfs), default=None, placeholder='Select PF1', label_visibility='collapsed', key='pf1')
|
| 219 |
+
selected_pf2 = st.multiselect('Select PF2:', list(pfs), default=None, placeholder='Select PF2', label_visibility='collapsed', key='pf2')
|
| 220 |
+
selected_c1 = st.multiselect('Select C1:', list(centers), default=None, placeholder='Select C1', label_visibility='collapsed', key='c1')
|
| 221 |
+
|
| 222 |
+
# Combine all selected players
|
| 223 |
+
all_selected = selected_pg1 + selected_pg2 + selected_sg1 + selected_sg2 + selected_sf1 + selected_sf2 + selected_pf1 + selected_pf2 + selected_c1
|
| 224 |
+
|
| 225 |
+
if all_selected:
|
| 226 |
+
# Get stats for selected players
|
| 227 |
+
selected_stats = roo_sample[roo_sample['Player'].isin(all_selected)]
|
| 228 |
+
|
| 229 |
+
# Calculate sums
|
| 230 |
+
salary_sum = selected_stats['Salary'].sum()
|
| 231 |
+
median_sum = selected_stats['Median'].sum()
|
| 232 |
+
own_sum = selected_stats['Own'].sum()
|
| 233 |
+
levx_sum = selected_stats['LevX'].sum()
|
| 234 |
+
|
| 235 |
+
# Display sums
|
| 236 |
+
st.write('---')
|
| 237 |
+
if sidebar_site == 'Draftkings':
|
| 238 |
+
if salary_sum > 50000:
|
| 239 |
+
st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $50,000')
|
| 240 |
+
else:
|
| 241 |
+
st.write(f'Total Salary: ${salary_sum:.2f}')
|
| 242 |
+
elif sidebar_site == 'Fanduel':
|
| 243 |
+
if salary_sum > 60000:
|
| 244 |
+
st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $60,000')
|
| 245 |
+
else:
|
| 246 |
+
st.write(f'Total Salary: ${salary_sum:.2f}')
|
| 247 |
+
st.write(f'Total Median: {median_sum:.2f}')
|
| 248 |
+
st.write(f'Total Ownership: {own_sum:.2f}%')
|
| 249 |
+
st.write(f'Total LevX: {levx_sum:.2f}')
|
| 250 |
+
|
| 251 |
+
with tab1:
|
| 252 |
+
with st.container():
|
| 253 |
+
st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
|
| 254 |
+
with st.container():
|
| 255 |
+
# First row - timestamp and reset button
|
| 256 |
+
col1, col2 = st.columns([3, 1])
|
| 257 |
+
with col1:
|
| 258 |
+
st.info(t_stamp)
|
| 259 |
+
with col2:
|
| 260 |
+
if st.button("Load/Reset Data", key='reset1'):
|
| 261 |
+
st.cache_data.clear()
|
| 262 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
|
| 263 |
+
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
| 264 |
+
dk_lineups = init_DK_lineups()
|
| 265 |
+
fd_lineups = init_FD_lineups()
|
| 266 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 267 |
+
for key in st.session_state.keys():
|
| 268 |
+
del st.session_state[key]
|
| 269 |
+
|
| 270 |
+
# Second row - main options
|
| 271 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 272 |
+
with col1:
|
| 273 |
+
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
|
| 274 |
+
with col2:
|
| 275 |
+
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
|
| 276 |
+
|
| 277 |
+
# Process site selection
|
| 278 |
+
if site_var2 == 'Draftkings':
|
| 279 |
+
site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
|
| 280 |
+
site_backlog = roo_backlog[roo_backlog['site'] == 'Draftkings']
|
| 281 |
+
elif site_var2 == 'Fanduel':
|
| 282 |
+
site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
|
| 283 |
+
site_backlog = roo_backlog[roo_backlog['site'] == 'Fanduel']
|
| 284 |
+
with col3:
|
| 285 |
+
slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary', 'Backlog'), key='slate_split')
|
| 286 |
+
|
| 287 |
+
if slate_split == 'Main Slate':
|
| 288 |
+
raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
|
| 289 |
+
elif slate_split == 'Secondary':
|
| 290 |
+
raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate']
|
| 291 |
+
elif slate_split == 'Backlog':
|
| 292 |
+
raw_baselines = site_backlog
|
| 293 |
+
# Third row - backlog options
|
| 294 |
+
col1, col2 = st.columns(2)
|
| 295 |
+
with col1:
|
| 296 |
+
view_all = st.checkbox("View all dates?", key='view_all')
|
| 297 |
+
with col2:
|
| 298 |
+
if not view_all:
|
| 299 |
+
date_var2 = st.date_input("Select date", key='date_var2')
|
| 300 |
+
|
| 301 |
+
if view_all:
|
| 302 |
+
raw_baselines = raw_baselines.sort_values(by=['Median', 'Date'], ascending=[False, False])
|
| 303 |
+
else:
|
| 304 |
+
raw_baselines = raw_baselines[raw_baselines['Date'] == date_var2.strftime('%m-%d-%Y')]
|
| 305 |
+
raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
|
| 306 |
+
|
| 307 |
+
with col4:
|
| 308 |
+
split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2')
|
| 309 |
+
if split_var2 == 'Specific Games':
|
| 310 |
+
team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2')
|
| 311 |
+
else:
|
| 312 |
+
team_var2 = raw_baselines.Team.values.tolist()
|
| 313 |
+
|
| 314 |
+
pos_var2 = st.selectbox('Position Filter', options=['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')
|
| 315 |
+
|
| 316 |
+
display_container_1 = st.empty()
|
| 317 |
+
display_dl_container_1 = st.empty()
|
| 318 |
+
display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
|
| 319 |
+
if view_var2 == 'Advanced':
|
| 320 |
+
display_proj = display_proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
| 321 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
|
| 322 |
+
elif view_var2 == 'Simple':
|
| 323 |
+
display_proj = display_proj[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']]
|
| 324 |
+
export_data = display_proj.copy()
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
display_proj = display_proj.set_index('Player')
|
| 328 |
+
st.session_state.display_proj = display_proj
|
| 329 |
+
|
| 330 |
+
with display_container_1:
|
| 331 |
+
display_container = st.empty()
|
| 332 |
+
if 'display_proj' in st.session_state:
|
| 333 |
+
if pos_var2 == 'All':
|
| 334 |
+
st.session_state.display_proj = st.session_state.display_proj
|
| 335 |
+
elif pos_var2 != 'All':
|
| 336 |
+
st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
|
| 337 |
+
st.dataframe(st.session_state.display_proj.style.set_properties(**{'font-size': '6pt'}).background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), height=1000, use_container_width = True)
|
| 338 |
+
|
| 339 |
+
with display_dl_container_1:
|
| 340 |
+
display_dl_container = st.empty()
|
| 341 |
+
if 'display_proj' in st.session_state:
|
| 342 |
+
st.download_button(
|
| 343 |
+
label="Export Tables",
|
| 344 |
+
data=convert_df_to_csv(export_data),
|
| 345 |
+
file_name='NBA_ROO_export.csv',
|
| 346 |
+
mime='text/csv',
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
with tab2:
|
| 350 |
+
col1, col2 = st.columns([1, 7])
|
| 351 |
+
with col1:
|
| 352 |
+
if st.button("Load/Reset Data", key='reset2'):
|
| 353 |
+
st.cache_data.clear()
|
| 354 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
|
| 355 |
+
dk_lineups = init_DK_lineups()
|
| 356 |
+
fd_lineups = init_FD_lineups()
|
| 357 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 358 |
+
for key in st.session_state.keys():
|
| 359 |
+
del st.session_state[key]
|
| 360 |
+
|
| 361 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate'))
|
| 362 |
+
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
| 363 |
+
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
|
| 364 |
+
|
| 365 |
+
if site_var1 == 'Draftkings':
|
| 366 |
+
raw_baselines = dk_raw
|
| 367 |
+
ROO_slice = roo_raw[roo_raw['site'] == 'Draftkings']
|
| 368 |
+
id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
|
| 369 |
+
# Get the minimum and maximum ownership values from dk_lineups
|
| 370 |
+
min_own = np.min(dk_lineups[:,14])
|
| 371 |
+
max_own = np.max(dk_lineups[:,14])
|
| 372 |
+
column_names = dk_columns
|
| 373 |
+
|
| 374 |
+
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
| 375 |
+
if player_var1 == 'Specific Players':
|
| 376 |
+
player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
|
| 377 |
+
elif player_var1 == 'Full Slate':
|
| 378 |
+
player_var2 = dk_raw.Player.values.tolist()
|
| 379 |
+
|
| 380 |
+
elif site_var1 == 'Fanduel':
|
| 381 |
+
raw_baselines = fd_raw
|
| 382 |
+
ROO_slice = roo_raw[roo_raw['site'] == 'Fanduel']
|
| 383 |
+
id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
|
| 384 |
+
min_own = np.min(fd_lineups[:,15])
|
| 385 |
+
max_own = np.max(fd_lineups[:,15])
|
| 386 |
+
column_names = fd_columns
|
| 387 |
+
|
| 388 |
+
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
| 389 |
+
if player_var1 == 'Specific Players':
|
| 390 |
+
player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
|
| 391 |
+
elif player_var1 == 'Full Slate':
|
| 392 |
+
player_var2 = fd_raw.Player.values.tolist()
|
| 393 |
+
|
| 394 |
+
if st.button("Prepare data export", key='data_export'):
|
| 395 |
+
data_export = st.session_state.working_seed.copy()
|
| 396 |
+
if site_var1 == 'Draftkings':
|
| 397 |
+
for col_idx in range(8):
|
| 398 |
+
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
|
| 399 |
+
elif site_var1 == 'Fanduel':
|
| 400 |
+
for col_idx in range(9):
|
| 401 |
+
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
|
| 402 |
+
st.download_button(
|
| 403 |
+
label="Export optimals set",
|
| 404 |
+
data=convert_df(data_export),
|
| 405 |
+
file_name='NBA_optimals_export.csv',
|
| 406 |
+
mime='text/csv',
|
| 407 |
+
)
|
| 408 |
+
with col2:
|
| 409 |
+
|
| 410 |
+
if site_var1 == 'Draftkings':
|
| 411 |
+
if 'working_seed' in st.session_state:
|
| 412 |
+
st.session_state.working_seed = st.session_state.working_seed
|
| 413 |
+
if player_var1 == 'Specific Players':
|
| 414 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 415 |
+
elif player_var1 == 'Full Slate':
|
| 416 |
+
st.session_state.working_seed = dk_lineups.copy()
|
| 417 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
| 418 |
+
elif 'working_seed' not in st.session_state:
|
| 419 |
+
st.session_state.working_seed = dk_lineups.copy()
|
| 420 |
+
st.session_state.working_seed = st.session_state.working_seed
|
| 421 |
+
if player_var1 == 'Specific Players':
|
| 422 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 423 |
+
elif player_var1 == 'Full Slate':
|
| 424 |
+
st.session_state.working_seed = dk_lineups.copy()
|
| 425 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
| 426 |
+
|
| 427 |
+
elif site_var1 == 'Fanduel':
|
| 428 |
+
if 'working_seed' in st.session_state:
|
| 429 |
+
st.session_state.working_seed = st.session_state.working_seed
|
| 430 |
+
if player_var1 == 'Specific Players':
|
| 431 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 432 |
+
elif player_var1 == 'Full Slate':
|
| 433 |
+
st.session_state.working_seed = fd_lineups.copy()
|
| 434 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
| 435 |
+
elif 'working_seed' not in st.session_state:
|
| 436 |
+
st.session_state.working_seed = fd_lineups.copy()
|
| 437 |
+
st.session_state.working_seed = st.session_state.working_seed
|
| 438 |
+
if player_var1 == 'Specific Players':
|
| 439 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 440 |
+
elif player_var1 == 'Full Slate':
|
| 441 |
+
st.session_state.working_seed = fd_lineups.copy()
|
| 442 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
| 443 |
+
|
| 444 |
+
export_file = st.session_state.data_export_display.copy()
|
| 445 |
+
if site_var1 == 'Draftkings':
|
| 446 |
+
for col_idx in range(8):
|
| 447 |
+
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
|
| 448 |
+
elif site_var1 == 'Fanduel':
|
| 449 |
+
for col_idx in range(9):
|
| 450 |
+
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
|
| 451 |
+
|
| 452 |
+
with st.container():
|
| 453 |
+
if st.button("Reset Optimals", key='reset3'):
|
| 454 |
+
for key in st.session_state.keys():
|
| 455 |
+
del st.session_state[key]
|
| 456 |
+
if site_var1 == 'Draftkings':
|
| 457 |
+
st.session_state.working_seed = dk_lineups.copy()
|
| 458 |
+
elif site_var1 == 'Fanduel':
|
| 459 |
+
st.session_state.working_seed = fd_lineups.copy()
|
| 460 |
+
if 'data_export_display' in st.session_state:
|
| 461 |
+
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
|
| 462 |
+
st.download_button(
|
| 463 |
+
label="Export display optimals",
|
| 464 |
+
data=convert_df(export_file),
|
| 465 |
+
file_name='NBA_display_optimals.csv',
|
| 466 |
+
mime='text/csv',
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
with st.container():
|
| 470 |
+
if 'working_seed' in st.session_state:
|
| 471 |
+
# Create a new dataframe with summary statistics
|
| 472 |
+
if site_var1 == 'Draftkings':
|
| 473 |
+
summary_df = pd.DataFrame({
|
| 474 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
| 475 |
+
'Salary': [
|
| 476 |
+
np.min(st.session_state.working_seed[:,8]),
|
| 477 |
+
np.mean(st.session_state.working_seed[:,8]),
|
| 478 |
+
np.max(st.session_state.working_seed[:,8]),
|
| 479 |
+
np.std(st.session_state.working_seed[:,8])
|
| 480 |
+
],
|
| 481 |
+
'Proj': [
|
| 482 |
+
np.min(st.session_state.working_seed[:,9]),
|
| 483 |
+
np.mean(st.session_state.working_seed[:,9]),
|
| 484 |
+
np.max(st.session_state.working_seed[:,9]),
|
| 485 |
+
np.std(st.session_state.working_seed[:,9])
|
| 486 |
+
],
|
| 487 |
+
'Own': [
|
| 488 |
+
np.min(st.session_state.working_seed[:,14]),
|
| 489 |
+
np.mean(st.session_state.working_seed[:,14]),
|
| 490 |
+
np.max(st.session_state.working_seed[:,14]),
|
| 491 |
+
np.std(st.session_state.working_seed[:,14])
|
| 492 |
+
]
|
| 493 |
+
})
|
| 494 |
+
elif site_var1 == 'Fanduel':
|
| 495 |
+
summary_df = pd.DataFrame({
|
| 496 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
| 497 |
+
'Salary': [
|
| 498 |
+
np.min(st.session_state.working_seed[:,9]),
|
| 499 |
+
np.mean(st.session_state.working_seed[:,9]),
|
| 500 |
+
np.max(st.session_state.working_seed[:,9]),
|
| 501 |
+
np.std(st.session_state.working_seed[:,9])
|
| 502 |
+
],
|
| 503 |
+
'Proj': [
|
| 504 |
+
np.min(st.session_state.working_seed[:,10]),
|
| 505 |
+
np.mean(st.session_state.working_seed[:,10]),
|
| 506 |
+
np.max(st.session_state.working_seed[:,10]),
|
| 507 |
+
np.std(st.session_state.working_seed[:,10])
|
| 508 |
+
],
|
| 509 |
+
'Own': [
|
| 510 |
+
np.min(st.session_state.working_seed[:,15]),
|
| 511 |
+
np.mean(st.session_state.working_seed[:,15]),
|
| 512 |
+
np.max(st.session_state.working_seed[:,15]),
|
| 513 |
+
np.std(st.session_state.working_seed[:,15])
|
| 514 |
+
]
|
| 515 |
+
})
|
| 516 |
+
|
| 517 |
+
# Set the index of the summary dataframe as the "Metric" column
|
| 518 |
+
summary_df = summary_df.set_index('Metric')
|
| 519 |
+
|
| 520 |
+
# Display the summary dataframe
|
| 521 |
+
st.subheader("Optimal Statistics")
|
| 522 |
+
st.dataframe(summary_df.style.format({
|
| 523 |
+
'Salary': '{:.2f}',
|
| 524 |
+
'Proj': '{:.2f}',
|
| 525 |
+
'Own': '{:.2f}'
|
| 526 |
+
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
|
| 527 |
+
|
| 528 |
+
with st.container():
|
| 529 |
+
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
|
| 530 |
+
with tab1:
|
| 531 |
+
if 'data_export_display' in st.session_state:
|
| 532 |
+
if site_var1 == 'Draftkings':
|
| 533 |
+
player_columns = st.session_state.data_export_display.iloc[:, :8]
|
| 534 |
+
elif site_var1 == 'Fanduel':
|
| 535 |
+
player_columns = st.session_state.data_export_display.iloc[:, :9]
|
| 536 |
+
|
| 537 |
+
# Flatten the DataFrame and count unique values
|
| 538 |
+
value_counts = player_columns.values.flatten().tolist()
|
| 539 |
+
value_counts = pd.Series(value_counts).value_counts()
|
| 540 |
+
|
| 541 |
+
percentages = (value_counts / lineup_num_var * 100).round(2)
|
| 542 |
+
|
| 543 |
+
# Create a DataFrame with the results
|
| 544 |
+
summary_df = pd.DataFrame({
|
| 545 |
+
'Player': value_counts.index,
|
| 546 |
+
'Salary': [salary_dict.get(player, player) for player in value_counts.index],
|
| 547 |
+
'Frequency': value_counts.values,
|
| 548 |
+
'Percentage': percentages.values
|
| 549 |
+
})
|
| 550 |
+
|
| 551 |
+
# Sort by frequency in descending order
|
| 552 |
+
summary_df = summary_df.sort_values('Frequency', ascending=False)
|
| 553 |
+
|
| 554 |
+
# Display the table
|
| 555 |
+
st.write("Player Frequency Table:")
|
| 556 |
+
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
|
| 557 |
+
|
| 558 |
+
st.download_button(
|
| 559 |
+
label="Export player frequency",
|
| 560 |
+
data=convert_df_to_csv(summary_df),
|
| 561 |
+
file_name='NBA_player_frequency.csv',
|
| 562 |
+
mime='text/csv',
|
| 563 |
+
)
|
| 564 |
+
with tab2:
|
| 565 |
+
if 'working_seed' in st.session_state:
|
| 566 |
+
if site_var1 == 'Draftkings':
|
| 567 |
+
player_columns = st.session_state.working_seed[:, :8]
|
| 568 |
+
elif site_var1 == 'Fanduel':
|
| 569 |
+
player_columns = st.session_state.working_seed[:, :9]
|
| 570 |
+
|
| 571 |
+
# Flatten the DataFrame and count unique values
|
| 572 |
+
value_counts = player_columns.flatten().tolist()
|
| 573 |
+
value_counts = pd.Series(value_counts).value_counts()
|
| 574 |
+
|
| 575 |
+
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
|
| 576 |
+
# Create a DataFrame with the results
|
| 577 |
+
summary_df = pd.DataFrame({
|
| 578 |
+
'Player': value_counts.index,
|
| 579 |
+
'Salary': [salary_dict.get(player, player) for player in value_counts.index],
|
| 580 |
+
'Frequency': value_counts.values,
|
| 581 |
+
'Percentage': percentages.values
|
| 582 |
+
})
|
| 583 |
+
|
| 584 |
+
# Sort by frequency in descending order
|
| 585 |
+
summary_df = summary_df.sort_values('Frequency', ascending=False)
|
| 586 |
+
|
| 587 |
+
# Display the table
|
| 588 |
+
st.write("Seed Frame Frequency Table:")
|
| 589 |
+
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
|
| 590 |
+
|
| 591 |
+
st.download_button(
|
| 592 |
+
label="Export seed frame frequency",
|
| 593 |
+
data=convert_df_to_csv(summary_df),
|
| 594 |
+
file_name='NBA_seed_frame_frequency.csv',
|
| 595 |
+
mime='text/csv',
|
| 596 |
+
)
|
app.yaml
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
runtime: python
|
| 2 |
+
env: flex
|
| 3 |
+
|
| 4 |
+
runtime_config:
|
| 5 |
+
python_version: 3
|
| 6 |
+
|
| 7 |
+
entrypoint: streamlit run streamlit-app.py --server.port $PORT
|
| 8 |
+
|
| 9 |
+
automatic_scaling:
|
| 10 |
+
max_num_instances: 2500
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
gspread
|
| 3 |
+
openpyxl
|
| 4 |
+
matplotlib
|
| 5 |
+
pymongo
|
| 6 |
+
pulp
|
| 7 |
+
docker
|
| 8 |
+
plotly
|
| 9 |
+
scipy
|