Toymakerftw
commited on
Commit
·
e69a18d
1
Parent(s):
99c5ed6
initial readme
Browse files- .gitattributes +35 -0
- README.md +13 -0
- app.py +118 -159
- requirements.txt +6 -6
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Trading Analyst
|
3 |
+
emoji: 📈
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.39.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,173 +1,132 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from yfinance import Ticker
|
3 |
import pandas as pd
|
4 |
-
import
|
5 |
-
|
6 |
-
import
|
7 |
-
from datetime import datetime, timedelta
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
data['MACD_Signal'] = macd_signal
|
30 |
-
|
31 |
-
return data
|
32 |
-
|
33 |
-
def generate_recommendation(data):
|
34 |
-
"""Generate buy/sell recommendations based on indicators."""
|
35 |
-
if data is None:
|
36 |
-
return "Insufficient data"
|
37 |
-
|
38 |
-
rsi = data['RSI'].iloc[-1]
|
39 |
-
macd = data['MACD'].iloc[-1]
|
40 |
-
macd_signal = data['MACD_Signal'].iloc[-1]
|
41 |
-
|
42 |
-
if rsi < 30 and macd > macd_signal:
|
43 |
-
return " BUY RECOMMENDATION: Stock is oversold and trending upward."
|
44 |
-
elif rsi > 70 and macd < macd_signal:
|
45 |
-
return " SELL RECOMMENDATION: Stock is overbought and trending downward."
|
46 |
-
else:
|
47 |
-
return "HOLD: No strong signal at this time."
|
48 |
-
|
49 |
-
def plot_stock_data(data):
|
50 |
-
"""Plot stock price and indicators."""
|
51 |
-
plt.figure(figsize=(10, 6))
|
52 |
-
|
53 |
-
# Plot closing prices
|
54 |
-
plt.plot(data['Close'], label='Close Price')
|
55 |
-
|
56 |
-
# Plot RSI
|
57 |
-
ax = plt.twinx()
|
58 |
-
ax.plot(data['RSI'], color='red', label='RSI')
|
59 |
-
ax.axhline(30, color='r', linestyle='--')
|
60 |
-
ax.axhline(70, color='r', linestyle='--')
|
61 |
-
|
62 |
-
# Add MACD
|
63 |
-
plt.figure(figsize=(10, 6))
|
64 |
-
plt.plot(data['MACD'], label='MACD')
|
65 |
-
plt.plot(data['MACD_Signal'], label='MACD Signal')
|
66 |
-
plt.fill_between(data.index, data['MACD_hist'], color='gray', alpha=0.2, label='MACD Histogram')
|
67 |
-
plt.legend()
|
68 |
-
|
69 |
-
plt.title(f"Stock Analysis for {symbol}")
|
70 |
-
plt.xlabel("Date")
|
71 |
-
plt.ylabel("Price")
|
72 |
-
plt.legend()
|
73 |
-
plt.grid(True)
|
74 |
-
|
75 |
-
return plt
|
76 |
-
|
77 |
-
def news_updates(symbol):
|
78 |
-
"""Fetch recent news articles for the stock."""
|
79 |
-
try:
|
80 |
-
news = Ticker(symbol).news
|
81 |
-
articles = []
|
82 |
-
for article in news:
|
83 |
-
articles.append({
|
84 |
-
'Title': article['title'],
|
85 |
-
'Publish Date': article['publishDate'],
|
86 |
-
'URL': article['url']
|
87 |
-
})
|
88 |
-
return pd.DataFrame(articles)
|
89 |
-
except Exception as e:
|
90 |
-
return pd.DataFrame(columns=['Title', 'Publish Date', 'URL'])
|
91 |
-
|
92 |
-
def main(symbol):
|
93 |
-
"""Main function to process stock symbol and generate output."""
|
94 |
-
# Fetch real-time price and historical data
|
95 |
-
real_time = Ticker(symbol).info
|
96 |
-
price = real_time['regularMarketPrice']
|
97 |
-
change = real_time['regularMarketChangePercent']
|
98 |
-
|
99 |
-
# Fetch and process historical data
|
100 |
-
historical_data = fetch_stock_data(symbol)
|
101 |
-
if historical_data is None:
|
102 |
-
return "Error: Could not fetch data for the symbol."
|
103 |
-
|
104 |
-
data = calculate_indicators(historical_data)
|
105 |
-
|
106 |
-
# Generate analysis
|
107 |
-
analysis = generate_recommendation(data)
|
108 |
-
|
109 |
-
# Plot visualization
|
110 |
-
fig = plot_stock_data(data)
|
111 |
-
|
112 |
-
# Fetch news
|
113 |
-
news_df = news_updates(symbol)
|
114 |
-
|
115 |
-
return {
|
116 |
-
'Price Analysis': pd.DataFrame([{
|
117 |
-
'Current Price': f'${price:.2f}',
|
118 |
-
'24h Change': f'{change:.2f}%',
|
119 |
-
'Recommendation': analysis
|
120 |
-
}]),
|
121 |
-
'Historical Data': data[['Close', 'RSI', 'MACD', 'MACD_Signal']],
|
122 |
-
'Visualizations': fig,
|
123 |
-
'Latest News': news_df
|
124 |
-
}
|
125 |
-
|
126 |
-
def interface(symbol):
|
127 |
-
"""Gradio interface implementation."""
|
128 |
try:
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
if not analysis['Latest News'].empty:
|
136 |
-
gr.Markdown("#### Latest News Updates")
|
137 |
-
gr.Dataframe(analysis['Latest News'], max_rows=5)
|
138 |
except Exception as e:
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
# Gradio Interface Setup
|
142 |
with gr.Blocks() as iface:
|
143 |
-
gr.Markdown("#
|
144 |
-
gr.Markdown(
|
145 |
-
|
|
|
|
|
146 |
with gr.Row():
|
147 |
-
|
148 |
-
label="
|
149 |
lines=1,
|
150 |
-
placeholder="Enter
|
151 |
)
|
152 |
-
|
153 |
-
|
154 |
with gr.Row():
|
155 |
-
gr.
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
analyze_button.click(
|
166 |
-
|
167 |
-
inputs=[
|
168 |
-
outputs=[
|
169 |
)
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
iface.launch()
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
import gradio as gr
|
|
|
4 |
import pandas as pd
|
5 |
+
import torch
|
6 |
+
from GoogleNews import GoogleNews
|
7 |
+
from transformers import pipeline
|
|
|
8 |
|
9 |
+
# Set up logging
|
10 |
+
logging.basicConfig(
|
11 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
12 |
+
)
|
13 |
+
|
14 |
+
SENTIMENT_ANALYSIS_MODEL = (
|
15 |
+
"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
|
16 |
+
)
|
17 |
+
|
18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
logging.info(f"Using device: {DEVICE}")
|
20 |
+
|
21 |
+
logging.info("Initializing sentiment analysis model...")
|
22 |
+
sentiment_analyzer = pipeline(
|
23 |
+
"sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
|
24 |
+
)
|
25 |
+
logging.info("Model initialized successfully")
|
26 |
+
|
27 |
+
|
28 |
+
def fetch_articles(query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
try:
|
30 |
+
logging.info(f"Fetching articles for query: '{query}'")
|
31 |
+
googlenews = GoogleNews(lang="en")
|
32 |
+
googlenews.search(query)
|
33 |
+
articles = googlenews.result()
|
34 |
+
logging.info(f"Fetched {len(articles)} articles")
|
35 |
+
return articles
|
|
|
|
|
|
|
36 |
except Exception as e:
|
37 |
+
logging.error(
|
38 |
+
f"Error while searching articles for query: '{query}'. Error: {e}"
|
39 |
+
)
|
40 |
+
raise gr.Error(
|
41 |
+
f"Unable to search articles for query: '{query}'. Try again later...",
|
42 |
+
duration=5,
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
def analyze_article_sentiment(article):
|
47 |
+
logging.info(f"Analyzing sentiment for article: {article['title']}")
|
48 |
+
sentiment = sentiment_analyzer(article["desc"])[0]
|
49 |
+
article["sentiment"] = sentiment
|
50 |
+
return article
|
51 |
+
|
52 |
+
|
53 |
+
def analyze_asset_sentiment(asset_name):
|
54 |
+
logging.info(f"Starting sentiment analysis for asset: {asset_name}")
|
55 |
+
|
56 |
+
logging.info("Fetching articles")
|
57 |
+
articles = fetch_articles(asset_name)
|
58 |
+
|
59 |
+
logging.info("Analyzing sentiment of each article")
|
60 |
+
analyzed_articles = [analyze_article_sentiment(article) for article in articles]
|
61 |
+
|
62 |
+
logging.info("Sentiment analysis completed")
|
63 |
+
|
64 |
+
return convert_to_dataframe(analyzed_articles)
|
65 |
+
|
66 |
+
|
67 |
+
def convert_to_dataframe(analyzed_articles):
|
68 |
+
df = pd.DataFrame(analyzed_articles)
|
69 |
+
df["Title"] = df.apply(
|
70 |
+
lambda row: f'<a href="{row["link"]}" target="_blank">{row["title"]}</a>',
|
71 |
+
axis=1,
|
72 |
+
)
|
73 |
+
df["Description"] = df["desc"]
|
74 |
+
df["Date"] = df["date"]
|
75 |
+
|
76 |
+
def sentiment_badge(sentiment):
|
77 |
+
colors = {
|
78 |
+
"negative": "red",
|
79 |
+
"neutral": "gray",
|
80 |
+
"positive": "green",
|
81 |
+
}
|
82 |
+
color = colors.get(sentiment, "grey")
|
83 |
+
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>'
|
84 |
+
|
85 |
+
df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
|
86 |
+
return df[["Sentiment", "Title", "Description", "Date"]]
|
87 |
+
|
88 |
|
|
|
89 |
with gr.Blocks() as iface:
|
90 |
+
gr.Markdown("# Trading Asset Sentiment Analysis")
|
91 |
+
gr.Markdown(
|
92 |
+
"Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!"
|
93 |
+
)
|
94 |
+
|
95 |
with gr.Row():
|
96 |
+
input_asset = gr.Textbox(
|
97 |
+
label="Asset Name",
|
98 |
lines=1,
|
99 |
+
placeholder="Enter the name of the trading asset...",
|
100 |
)
|
101 |
+
|
|
|
102 |
with gr.Row():
|
103 |
+
analyze_button = gr.Button("Analyze Sentiment", size="sm")
|
104 |
+
|
105 |
+
gr.Examples(
|
106 |
+
examples=[
|
107 |
+
"Bitcoin",
|
108 |
+
"Tesla",
|
109 |
+
"Apple",
|
110 |
+
"Amazon",
|
111 |
+
],
|
112 |
+
inputs=input_asset,
|
113 |
+
)
|
114 |
+
|
115 |
+
with gr.Row():
|
116 |
+
with gr.Column():
|
117 |
+
with gr.Blocks():
|
118 |
+
gr.Markdown("## Articles and Sentiment Analysis")
|
119 |
+
articles_output = gr.Dataframe(
|
120 |
+
headers=["Sentiment", "Title", "Description", "Date"],
|
121 |
+
datatype=["markdown", "html", "markdown", "markdown"],
|
122 |
+
wrap=False,
|
123 |
+
)
|
124 |
+
|
125 |
analyze_button.click(
|
126 |
+
analyze_asset_sentiment,
|
127 |
+
inputs=[input_asset],
|
128 |
+
outputs=[articles_output],
|
129 |
)
|
130 |
|
131 |
+
logging.info("Launching Gradio interface")
|
132 |
+
iface.queue().launch()
|
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
gradio==
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
1 |
+
gradio==4.39.0
|
2 |
+
transformers==4.43.2
|
3 |
+
diffusers==0.29.2
|
4 |
+
accelerate==0.33.0
|
5 |
+
sentencepiece==0.2.0
|
6 |
+
GoogleNews==1.6.14
|