Spaces:
Running
Running
Commit
·
512cb02
1
Parent(s):
5e49ae7
add readme
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Finetune Voxtral for ASR with Transformers 🤗
|
2 |
+
|
3 |
+
This repository fine-tunes the [Voxtral](https://huggingface.co/Deep-unlearning/Voxtral) speech model on conversational speech datasets using the Hugging Face `transformers` and `datasets` libraries.
|
4 |
+
|
5 |
+
## Installation
|
6 |
+
|
7 |
+
### Step 1: Clone the repository
|
8 |
+
|
9 |
+
```bash
|
10 |
+
git clone https://github.com/Deep-unlearning/Finetune-Voxtral-ASR.git
|
11 |
+
cd Finetune-Voxtral-ASR
|
12 |
+
```
|
13 |
+
|
14 |
+
### Step 2: Set up environment
|
15 |
+
|
16 |
+
Choose your preferred package manager:
|
17 |
+
|
18 |
+
<details>
|
19 |
+
<summary>📦 Using UV (recommended)</summary>
|
20 |
+
|
21 |
+
[Install `uv`](https://docs.astral.sh/uv/getting-started/installation/)
|
22 |
+
|
23 |
+
```bash
|
24 |
+
uv venv .venv --python 3.10 && source .venv/bin/activate
|
25 |
+
uv pip install -r requirements.txt
|
26 |
+
```
|
27 |
+
|
28 |
+
</details>
|
29 |
+
|
30 |
+
<details>
|
31 |
+
<summary>🐍 Using pip</summary>
|
32 |
+
|
33 |
+
```bash
|
34 |
+
python -m venv .venv --python 3.10 && source .venv/bin/activate
|
35 |
+
pip install --upgrade pip
|
36 |
+
pip install -r requirements.txt
|
37 |
+
```
|
38 |
+
|
39 |
+
</details>
|
40 |
+
|
41 |
+
## Dataset Preparation
|
42 |
+
|
43 |
+
Perfect — here’s a **drop-in replacement** for your README’s “Dataset Preparation” that matches your script (uses **`hf-audio/esb-datasets-test-only-sorted`** with the **`voxpopuli`** config, 16 kHz casting, and a small train/eval slice), and explains the Voxtral/LLaMA-style prompt+label masking your collator implements.
|
44 |
+
|
45 |
+
---
|
46 |
+
|
47 |
+
## Dataset Preparation
|
48 |
+
|
49 |
+
For ASR fine-tuning, inputs look like:
|
50 |
+
|
51 |
+
* **Inputs**: `[AUDIO] … [AUDIO] <transcribe> <reference transcription>`
|
52 |
+
* **Labels**: same sequence, but the prefix `[AUDIO] … [AUDIO] <transcribe>` is **masked with `-100`** so loss is computed **only** on the transcription tokens.
|
53 |
+
|
54 |
+
The `VoxtralDataCollator` already builds this sequence (prompt expansion via the processor and label masking).
|
55 |
+
The dataset only needs two fields:
|
56 |
+
|
57 |
+
```python
|
58 |
+
{
|
59 |
+
"audio": {"array": <float32 numpy array>, "sampling_rate": 16000, ...},
|
60 |
+
"text": "<reference transcription>"
|
61 |
+
}
|
62 |
+
```
|
63 |
+
|
64 |
+
|
65 |
+
If you want to swap to a different dataset, ensure after loading you still have:
|
66 |
+
|
67 |
+
* an **`audio`** column (cast to `Audio(sampling_rate=16000)`), and
|
68 |
+
* a **`text`** column (the reference transcription).
|
69 |
+
|
70 |
+
If your dataset uses different column names, map them to `audio` and `text` before returning.
|
71 |
+
|
72 |
+
## Training
|
73 |
+
|
74 |
+
Run the training script:
|
75 |
+
|
76 |
+
```bash
|
77 |
+
uv run train.py
|
78 |
+
```
|
79 |
+
|
80 |
+
Logs and checkpoints will be saved under the `outputs/` directory by default.
|
81 |
+
|
82 |
+
## Training with LoRA
|
83 |
+
|
84 |
+
You can also run the training script with LoRA:
|
85 |
+
|
86 |
+
```bash
|
87 |
+
uv run train_lora.py
|
88 |
+
```
|
89 |
+
|
90 |
+
**Happy fine-tuning Voxtral!** 🚀
|