VoxFactory / scripts /train_lora.py
Joseph Pollack
adds interface and dataset and auto push and demo
be9aa9f unverified
raw
history blame
9.6 kB
#!/usr/bin/env python3
import argparse
import json
from pathlib import Path
import torch
from datasets import load_dataset, Audio, Dataset
from transformers import (
VoxtralForConditionalGeneration,
VoxtralProcessor,
Trainer,
TrainingArguments,
)
from peft import LoraConfig, get_peft_model
class VoxtralDataCollator:
"""Data collator for Voxtral STT training - processes audio and text."""
def __init__(self, processor, model_id):
self.processor = processor
self.model_id = model_id
self.pad_id = processor.tokenizer.pad_token_id
def __call__(self, features):
"""
Each feature should have:
- "audio": raw audio (whatever your processor expects)
- "text": transcription string
"""
texts = [f["text"] for f in features]
audios = [f["audio"]["array"] for f in features]
# 1) Build the PROMPT part: [AUDIO]…[AUDIO] <transcribe>
prompt = self.processor.apply_transcription_request( # (same method you used)
language="en",
model_id=self.model_id if hasattr(self, "model_id") else None,
audio=audios,
format=["WAV"] * len(audios),
return_tensors="pt",
)
# prompt["input_ids"]: shape [B, L_prompt]
# keep any extra fields (e.g., audio features) to pass through to the model
passthrough = {k: v for k, v in prompt.items()
if k not in ("input_ids", "attention_mask")}
prompt_ids = prompt["input_ids"] # [B, Lp]
prompt_attn = prompt["attention_mask"] # [B, Lp]
B = prompt_ids.size(0)
tok = self.processor.tokenizer
# 2) Tokenize transcriptions WITHOUT padding; we'll pad after concatenation
text_tok = tok(
texts,
add_special_tokens=False,
padding=False,
truncation=True,
max_length=256,
return_tensors=None,
)
text_ids_list = text_tok["input_ids"]
# 3) Concatenate: input_ids = [PROMPT] + [TEXT]
input_ids, attention_mask, labels = [], [], []
for i in range(B):
p_ids = prompt_ids[i].tolist()
p_att = prompt_attn[i].tolist()
t_ids = text_ids_list[i]
ids = p_ids + t_ids
attn = p_att + [1] * len(t_ids)
# labels: mask prompt tokens, learn only on text tokens
lab = [-100] * len(p_ids) + t_ids
input_ids.append(ids)
attention_mask.append(attn)
labels.append(lab)
# 4) Pad to max length in batch
pad_id = tok.pad_token_id if tok.pad_token_id is not None else tok.eos_token_id
max_len = max(len(x) for x in input_ids)
def pad_to(seq, fill, L):
return seq + [fill] * (L - len(seq))
input_ids = [pad_to(x, pad_id, max_len) for x in input_ids]
attention_mask = [pad_to(x, 0, max_len) for x in attention_mask]
labels = [pad_to(x, -100, max_len) for x in labels]
batch = {
"input_ids": torch.tensor(input_ids, dtype=torch.long),
"attention_mask": torch.tensor(attention_mask, dtype=torch.long),
"labels": torch.tensor(labels, dtype=torch.long),
}
# 5) Include processor outputs needed by the model (e.g., audio features)
for k, v in passthrough.items():
batch[k] = v
return batch
def _load_jsonl_dataset(jsonl_path: str) -> Dataset:
"""Load local JSONL with fields {audio_path, text} into a Dataset with audio column."""
records = []
jsonl_file = Path(jsonl_path)
if not jsonl_file.exists():
raise FileNotFoundError(f"Dataset jsonl not found: {jsonl_path}")
with open(jsonl_file, "r", encoding="utf-8") as f:
for line in f:
if not line.strip():
continue
obj = json.loads(line)
audio_path = obj.get("audio_path") or obj.get("audio")
text = obj.get("text")
if not audio_path or text is None:
continue
records.append({"audio": audio_path, "text": text})
if not records:
raise ValueError("No valid records found in JSONL. Expect keys: audio_path, text")
ds = Dataset.from_list(records)
# Cast the audio column from file paths and resample to 16kHz
ds = ds.cast_column("audio", Audio(sampling_rate=16000))
return ds
def load_and_prepare_dataset(dataset_jsonl: str | None, dataset_name: str | None, dataset_config: str | None,
train_count: int, eval_count: int):
"""Load and prepare dataset for training (JSONL or HF hub)."""
if dataset_jsonl:
print(f"Loading local JSONL dataset: {dataset_jsonl}")
ds = _load_jsonl_dataset(dataset_jsonl)
else:
ds_name = dataset_name or "hf-audio/esb-datasets-test-only-sorted"
ds_cfg = dataset_config or "voxpopuli"
print(f"Loading dataset: {ds_name}/{ds_cfg}")
ds = load_dataset(ds_name, ds_cfg, split="test")
ds = ds.cast_column("audio", Audio(sampling_rate=16000))
total = len(ds)
train_end = min(train_count, total)
eval_end = min(train_end + eval_count, total)
train_dataset = ds.select(range(train_end))
eval_dataset = ds.select(range(train_end, eval_end)) if eval_end > train_end else None
return train_dataset, eval_dataset
def main():
parser = argparse.ArgumentParser(description="LoRA fine-tune Voxtral for ASR")
parser.add_argument("--dataset-jsonl", type=str, default=None, help="Path to local JSONL with {audio_path, text}")
parser.add_argument("--dataset-name", type=str, default=None, help="HF dataset repo (if not using JSONL)")
parser.add_argument("--dataset-config", type=str, default=None, help="HF dataset config/subset")
parser.add_argument("--train-count", type=int, default=100, help="Number of training samples to use")
parser.add_argument("--eval-count", type=int, default=50, help="Number of eval samples to use")
parser.add_argument("--model-checkpoint", type=str, default="mistralai/Voxtral-Mini-3B-2507")
parser.add_argument("--output-dir", type=str, default="./voxtral-finetuned")
parser.add_argument("--batch-size", type=int, default=2)
parser.add_argument("--eval-batch-size", type=int, default=4)
parser.add_argument("--grad-accum", type=int, default=4)
parser.add_argument("--learning-rate", type=float, default=5e-5)
parser.add_argument("--epochs", type=float, default=3)
parser.add_argument("--logging-steps", type=int, default=10)
parser.add_argument("--save-steps", type=int, default=50)
parser.add_argument("--lora-r", type=int, default=8)
parser.add_argument("--lora-alpha", type=int, default=32)
parser.add_argument("--lora-dropout", type=float, default=0.0)
parser.add_argument("--freeze-audio-tower", action="store_true", help="Freeze audio encoder parameters")
args = parser.parse_args()
model_checkpoint = args.model_checkpoint
output_dir = args.output_dir
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {torch_device}")
print("Loading processor and model...")
processor = VoxtralProcessor.from_pretrained(model_checkpoint)
lora_cfg = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
bias="none",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
task_type="SEQ_2_SEQ_LM",
)
model = VoxtralForConditionalGeneration.from_pretrained(
model_checkpoint,
torch_dtype=torch.bfloat16,
device_map="auto"
)
if args.freeze_audio_tower:
for param in model.audio_tower.parameters():
param.requires_grad = False
model = get_peft_model(model, lora_cfg)
model.print_trainable_parameters()
train_dataset, eval_dataset = load_and_prepare_dataset(
dataset_jsonl=args.dataset_jsonl,
dataset_name=args.dataset_name,
dataset_config=args.dataset_config,
train_count=args.train_count,
eval_count=args.eval_count,
)
data_collator = VoxtralDataCollator(processor, model_checkpoint)
training_args = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.eval_batch_size,
gradient_accumulation_steps=args.grad_accum,
learning_rate=args.learning_rate,
num_train_epochs=args.epochs,
bf16=True,
logging_steps=args.logging_issues if hasattr(args, 'logging_issues') else args.logging_steps,
eval_steps=args.save_steps if eval_dataset else None,
save_steps=args.save_steps,
eval_strategy="steps" if eval_dataset else "no",
save_strategy="steps",
report_to="none",
remove_unused_columns=False,
dataloader_num_workers=1,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
)
print("Starting training...")
trainer.train()
print(f"Saving model to {output_dir}")
trainer.save_model()
processor.save_pretrained(output_dir)
if eval_dataset:
results = trainer.evaluate()
print(f"Final evaluation results: {results}")
print("Training completed successfully!")
if __name__ == "__main__":
main()