Spaces:
Running
Running
#!/usr/bin/env python3 | |
""" | |
Voxtral ASR Fine-tuning Interface | |
Features: | |
- Collect a personal voice dataset (upload WAV/FLAC + transcripts or record mic audio) | |
- Build a JSONL dataset ({audio_path, text}) at 16kHz | |
- Fine-tune Voxtral (LoRA or full) with streamed logs | |
- Push model to Hugging Face Hub | |
- Deploy a Voxtral ASR demo Space | |
Env tokens (optional): | |
- HF_WRITE_TOKEN or HF_TOKEN: write access token | |
- HF_READ_TOKEN: optional read token | |
- HF_USERNAME: fallback username if not derivable from token | |
""" | |
from __future__ import annotations | |
import os | |
import json | |
from pathlib import Path | |
from datetime import datetime | |
from typing import Any, Dict, Generator, Optional, Tuple | |
import gradio as gr | |
PROJECT_ROOT = Path(__file__).resolve().parent | |
def get_python() -> str: | |
import sys | |
return sys.executable or "python" | |
def get_username_from_token(token: str) -> Optional[str]: | |
try: | |
from huggingface_hub import HfApi # type: ignore | |
api = HfApi(token=token) | |
info = api.whoami() | |
if isinstance(info, dict): | |
return info.get("name") or info.get("username") | |
if isinstance(info, str): | |
return info | |
except Exception: | |
return None | |
return None | |
def run_command_stream(args: list[str], env: Dict[str, str], cwd: Optional[Path] = None) -> Generator[str, None, int]: | |
import subprocess | |
import shlex | |
yield f"$ {' '.join(shlex.quote(a) for a in ([get_python()] + args))}" | |
process = subprocess.Popen( | |
[get_python()] + args, | |
stdout=subprocess.PIPE, | |
stderr=subprocess.STDOUT, | |
text=True, | |
env=env, | |
cwd=str(cwd or PROJECT_ROOT), | |
bufsize=1, | |
universal_newlines=True, | |
) | |
assert process.stdout is not None | |
for line in iter(process.stdout.readline, ""): | |
yield line.rstrip() | |
process.stdout.close() | |
code = process.wait() | |
yield f"[exit_code={code}]" | |
return code | |
def detect_nvidia_driver() -> Tuple[bool, str]: | |
"""Detect NVIDIA driver/GPU presence with multiple strategies. | |
Returns (available, human_message). | |
""" | |
# 1) Try torch CUDA | |
try: | |
import torch # type: ignore | |
if torch.cuda.is_available(): | |
try: | |
num = torch.cuda.device_count() | |
names = [torch.cuda.get_device_name(i) for i in range(num)] | |
return True, f"NVIDIA GPU detected: {', '.join(names)}" | |
except Exception: | |
return True, "NVIDIA GPU detected (torch.cuda available)" | |
except Exception: | |
pass | |
# 2) Try NVML via pynvml | |
try: | |
import pynvml # type: ignore | |
try: | |
pynvml.nvmlInit() | |
cnt = pynvml.nvmlDeviceGetCount() | |
names = [] | |
for i in range(cnt): | |
h = pynvml.nvmlDeviceGetHandleByIndex(i) | |
names.append(pynvml.nvmlDeviceGetName(h).decode("utf-8", errors="ignore")) | |
drv = pynvml.nvmlSystemGetDriverVersion().decode("utf-8", errors="ignore") | |
pynvml.nvmlShutdown() | |
if cnt > 0: | |
return True, f"NVIDIA driver {drv}; GPUs: {', '.join(names)}" | |
except Exception: | |
pass | |
except Exception: | |
pass | |
# 3) Try nvidia-smi | |
try: | |
import subprocess | |
res = subprocess.run(["nvidia-smi", "-L"], capture_output=True, text=True, timeout=3) | |
if res.returncode == 0 and res.stdout.strip(): | |
return True, res.stdout.strip().splitlines()[0] | |
except Exception: | |
pass | |
return False, "No NVIDIA driver/GPU detected" | |
def duplicate_space_hint() -> str: | |
space_id = os.environ.get("SPACE_ID") or os.environ.get("HF_SPACE_ID") | |
if space_id: | |
space_url = f"https://huggingface.co/spaces/{space_id}" | |
dup_url = f"{space_url}?duplicate=true" | |
return ( | |
f"ℹ️ No NVIDIA driver detected. If you're on Hugging Face Spaces, " | |
f"please duplicate this Space to GPU hardware: [Duplicate this Space]({dup_url})." | |
) | |
return ( | |
"ℹ️ No NVIDIA driver detected. To enable training, run on a machine with an NVIDIA GPU/driver " | |
"or duplicate this Space on Hugging Face with GPU hardware." | |
) | |
def _write_jsonl(rows: list[dict], path: Path) -> Path: | |
path.parent.mkdir(parents=True, exist_ok=True) | |
with open(path, "w", encoding="utf-8") as f: | |
for r in rows: | |
f.write(json.dumps(r, ensure_ascii=False) + "\n") | |
return path | |
def _save_uploaded_dataset(files: list, transcripts: list[str]) -> str: | |
dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user" | |
dataset_dir.mkdir(parents=True, exist_ok=True) | |
rows: list[dict] = [] | |
for i, fpath in enumerate(files or []): | |
if i >= len(transcripts): | |
break | |
rows.append({"audio_path": fpath, "text": transcripts[i] or ""}) | |
jsonl_path = dataset_dir / "data.jsonl" | |
_write_jsonl(rows, jsonl_path) | |
return str(jsonl_path) | |
def _save_recordings(recordings: list[tuple[int, list]], transcripts: list[str]) -> str: | |
import soundfile as sf | |
dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user" | |
wav_dir = dataset_dir / "wavs" | |
wav_dir.mkdir(parents=True, exist_ok=True) | |
rows: list[dict] = [] | |
for i, rec in enumerate(recordings or []): | |
if rec is None: | |
continue | |
if i >= len(transcripts): | |
break | |
sr, data = rec | |
out_path = wav_dir / f"rec_{i:04d}.wav" | |
sf.write(str(out_path), data, sr) | |
rows.append({"audio_path": str(out_path), "text": transcripts[i] or ""}) | |
jsonl_path = dataset_dir / "data.jsonl" | |
_write_jsonl(rows, jsonl_path) | |
return str(jsonl_path) | |
def start_voxtral_training( | |
use_lora: bool, | |
base_model: str, | |
repo_short: str, | |
jsonl_path: str, | |
train_count: int, | |
eval_count: int, | |
batch_size: int, | |
grad_accum: int, | |
learning_rate: float, | |
epochs: float, | |
lora_r: int, | |
lora_alpha: int, | |
lora_dropout: float, | |
freeze_audio_tower: bool, | |
push_to_hub: bool, | |
deploy_demo: bool, | |
) -> Generator[str, None, None]: | |
env = os.environ.copy() | |
write_token = env.get("HF_WRITE_TOKEN") or env.get("HF_TOKEN") | |
read_token = env.get("HF_READ_TOKEN") | |
username = get_username_from_token(write_token or "") or env.get("HF_USERNAME") or "" | |
output_dir = PROJECT_ROOT / "outputs" / repo_short | |
# 1) Train | |
script = PROJECT_ROOT / ("scripts/train_lora.py" if use_lora else "scripts/train.py") | |
args = [str(script)] | |
if jsonl_path: | |
args += ["--dataset-jsonl", jsonl_path] | |
args += [ | |
"--model-checkpoint", base_model, | |
"--train-count", str(train_count), | |
"--eval-count", str(eval_count), | |
"--batch-size", str(batch_size), | |
"--grad-accum", str(grad_accum), | |
"--learning-rate", str(learning_rate), | |
"--epochs", str(epochs), | |
"--output-dir", str(output_dir), | |
"--save-steps", "50", | |
] | |
if use_lora: | |
args += [ | |
"--lora-r", str(lora_r), | |
"--lora-alpha", str(lora_alpha), | |
"--lora-dropout", str(lora_dropout), | |
] | |
if freeze_audio_tower: | |
args += ["--freeze-audio-tower"] | |
for line in run_command_stream(args, env): | |
yield line | |
# 2) Push to Hub | |
if push_to_hub: | |
repo_name = f"{username}/{repo_short}" if username else repo_short | |
push_args = [ | |
str(PROJECT_ROOT / "scripts/push_to_huggingface.py"), | |
str(output_dir), | |
repo_name, | |
] | |
for line in run_command_stream(push_args, env): | |
yield line | |
# 3) Deploy demo Space | |
if deploy_demo and username: | |
deploy_args = [ | |
str(PROJECT_ROOT / "scripts/deploy_demo_space.py"), | |
"--hf-token", write_token or "", | |
"--hf-username", username, | |
"--model-id", f"{username}/{repo_short}", | |
"--demo-type", "voxtral", | |
"--space-name", f"{repo_short}-demo", | |
] | |
for line in run_command_stream(deploy_args, env): | |
yield line | |
def load_multilingual_phrases(language="en", max_phrases=None, split="train"): | |
"""Load phrases from NVIDIA Granary dataset. | |
Uses the high-quality Granary dataset which contains speech recognition | |
and translation data for 25 European languages. | |
Args: | |
language: Language code (e.g., 'en', 'de', 'fr', etc.) | |
max_phrases: Maximum number of phrases to load (None for default 1000) | |
split: Dataset split to use ('train', 'validation', 'test') | |
Returns: | |
List of transcription phrases from Granary dataset | |
""" | |
from datasets import load_dataset | |
import random | |
# Default to 1000 phrases if not specified | |
if max_phrases is None: | |
max_phrases = 1000 | |
# Language code mapping for Granary dataset | |
# Granary supports these language codes directly | |
granary_supported_langs = { | |
"en": "en", "de": "de", "fr": "fr", "es": "es", "it": "it", | |
"pl": "pl", "pt": "pt", "nl": "nl", "ru": "ru", "ar": "ar", | |
"zh": "zh", "ja": "ja", "ko": "ko", "da": "da", "sv": "sv", | |
"no": "no", "fi": "fi", "et": "et", "lv": "lv", "lt": "lt", | |
"sl": "sl", "sk": "sk", "cs": "cs", "hr": "hr", "bg": "bg", | |
"uk": "uk", "ro": "ro", "hu": "hu", "el": "el", "mt": "mt" | |
} | |
# Map input language to Granary configuration | |
granary_lang = granary_supported_langs.get(language, "en") # Default to English | |
try: | |
print(f"Loading phrases from NVIDIA Granary dataset for language: {language}") | |
# Load Granary dataset with ASR (speech recognition) split | |
# Use streaming to handle large datasets efficiently | |
ds = load_dataset("nvidia/Granary", granary_lang, split="asr", streaming=True) | |
phrases = [] | |
count = 0 | |
seen_phrases = set() | |
# Sample phrases from the dataset | |
for example in ds: | |
if count >= max_phrases: | |
break | |
# Extract the text transcription | |
text = example.get("text", "").strip() | |
# Filter for quality phrases | |
if (text and | |
len(text) > 10 and # Minimum length | |
len(text) < 200 and # Maximum length to avoid very long utterances | |
text not in seen_phrases and # Avoid duplicates | |
not text.isdigit() and # Avoid pure numbers | |
not all(c in "0123456789., " for c in text)): # Avoid mostly numeric | |
phrases.append(text) | |
seen_phrases.add(text) | |
count += 1 | |
if phrases: | |
# Shuffle the phrases for variety | |
random.shuffle(phrases) | |
print(f"Successfully loaded {len(phrases)} phrases from Granary dataset for {language}") | |
return phrases | |
else: | |
print(f"No suitable phrases found in Granary dataset for {language}") | |
raise Exception("No phrases found") | |
except Exception as e: | |
print(f"Granary dataset loading failed for {language}: {e}") | |
# Fallback to basic phrases if Granary fails | |
print("Using fallback phrases") | |
fallback_phrases = [ | |
"The quick brown fox jumps over the lazy dog.", | |
"Please say your full name.", | |
"Today is a good day to learn something new.", | |
"Artificial intelligence helps with many tasks.", | |
"I enjoy reading books and listening to music.", | |
"This is a sample sentence for testing speech.", | |
"Speak clearly and at a normal pace.", | |
"Numbers like one, two, three are easy to say.", | |
"The weather is sunny with a chance of rain.", | |
"Thank you for taking the time to help.", | |
"Hello, how are you today?", | |
"I would like to order a pizza.", | |
"The meeting is scheduled for tomorrow.", | |
"Please call me back as soon as possible.", | |
"Thank you for your assistance.", | |
"Can you help me with this problem?", | |
"I need to make a reservation.", | |
"The weather looks beautiful outside.", | |
"Let's go for a walk in the park.", | |
"I enjoy listening to classical music.", | |
] | |
if max_phrases: | |
fallback_phrases = random.sample(fallback_phrases, min(max_phrases, len(fallback_phrases))) | |
else: | |
random.shuffle(fallback_phrases) | |
return fallback_phrases | |
# Initialize phrases dynamically | |
DEFAULT_LANGUAGE = "en" # Default to English | |
ALL_PHRASES = load_multilingual_phrases(DEFAULT_LANGUAGE, max_phrases=None) | |
with gr.Blocks(title="Voxtral ASR Fine-tuning") as demo: | |
has_gpu, gpu_msg = detect_nvidia_driver() | |
if has_gpu: | |
gr.HTML( | |
f""" | |
<div style="background-color: rgba(59, 130, 246, 0.1); border: 1px solid rgba(59, 130, 246, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;"> | |
<p style="color: rgb(59, 130, 246); margin: 0; font-size: 14px; font-weight: 600;"> | |
✅ NVIDIA GPU ready — {gpu_msg} | |
</p> | |
<p style="color: rgb(59, 130, 246); margin: 6px 0 0; font-size: 12px;"> | |
Set HF_WRITE_TOKEN/HF_TOKEN in environment to enable Hub push. | |
</p> | |
</div> | |
""" | |
) | |
else: | |
hint_md = duplicate_space_hint() | |
gr.HTML( | |
f""" | |
<div style="background-color: rgba(245, 158, 11, 0.1); border: 1px solid rgba(245, 158, 11, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;"> | |
<p style="color: rgb(234, 88, 12); margin: 0; font-size: 14px; font-weight: 600;"> | |
⚠️ No NVIDIA GPU/driver detected — training requires a GPU runtime | |
</p> | |
<p style="color: rgb(234, 88, 12); margin: 6px 0 0; font-size: 12px;"> | |
{hint_md} | |
</p> | |
</div> | |
""" | |
) | |
gr.Markdown(""" | |
# 🎙️ Voxtral ASR Fine-tuning | |
Read the phrases below and record them. Then start fine-tuning. | |
""") | |
# Hidden state to track dataset JSONL path | |
jsonl_path_state = gr.State("") | |
# Language selection for NVIDIA Granary phrases | |
language_selector = gr.Dropdown( | |
choices=[ | |
("English", "en"), | |
("German", "de"), | |
("French", "fr"), | |
("Spanish", "es"), | |
("Italian", "it"), | |
("Portuguese", "pt"), | |
("Polish", "pl"), | |
("Dutch", "nl"), | |
("Russian", "ru"), | |
("Arabic", "ar"), | |
("Chinese", "zh"), | |
("Japanese", "ja"), | |
("Korean", "ko"), | |
("Danish", "da"), | |
("Swedish", "sv"), | |
("Norwegian", "no"), | |
("Finnish", "fi"), | |
("Estonian", "et"), | |
("Latvian", "lv"), | |
("Lithuanian", "lt"), | |
("Slovenian", "sl"), | |
("Slovak", "sk"), | |
("Czech", "cs"), | |
("Croatian", "hr"), | |
("Bulgarian", "bg"), | |
("Ukrainian", "uk"), | |
("Romanian", "ro"), | |
("Hungarian", "hu"), | |
("Greek", "el"), | |
("Maltese", "mt") | |
], | |
value="en", | |
label="Language for Speech Phrases", | |
info="Select language for authentic phrases from NVIDIA Granary dataset (25 European languages)" | |
) | |
# Recording grid with dynamic text readouts | |
phrase_texts_state = gr.State(ALL_PHRASES) | |
visible_rows_state = gr.State(10) # Start with 10 visible rows | |
MAX_COMPONENTS = 100 # Fixed maximum number of components | |
# Create fixed number of components upfront | |
phrase_markdowns: list[gr.Markdown] = [] | |
rec_components = [] | |
def create_recording_grid(max_components=MAX_COMPONENTS): | |
"""Create recording grid components with fixed maximum""" | |
markdowns = [] | |
recordings = [] | |
for idx in range(max_components): | |
visible = False # Initially hidden - will be revealed when language is selected | |
phrase_text = ALL_PHRASES[idx] if idx < len(ALL_PHRASES) else "" | |
md = gr.Markdown(f"**{idx+1}. {phrase_text}**", visible=visible) | |
markdowns.append(md) | |
comp = gr.Audio(sources="microphone", type="numpy", label=f"Recording {idx+1}", visible=visible) | |
recordings.append(comp) | |
return markdowns, recordings | |
# Initial grid creation | |
with gr.Column(): | |
phrase_markdowns, rec_components = create_recording_grid(MAX_COMPONENTS) | |
# Add more rows button | |
add_rows_btn = gr.Button("➕ Add 10 More Rows", variant="secondary", visible=False) | |
def add_more_rows(current_visible, current_phrases): | |
"""Add 10 more rows by making them visible""" | |
new_visible = min(current_visible + 10, MAX_COMPONENTS, len(current_phrases)) | |
# Create updates for all MAX_COMPONENTS (both markdown and audio components) | |
markdown_updates = [] | |
audio_updates = [] | |
for i in range(MAX_COMPONENTS): | |
if i < len(current_phrases) and i < new_visible: | |
markdown_updates.append(gr.update(visible=True)) | |
audio_updates.append(gr.update(visible=True)) | |
else: | |
markdown_updates.append(gr.update(visible=False)) | |
audio_updates.append(gr.update(visible=False)) | |
# Return: [state] + markdown_updates + audio_updates | |
return [new_visible] + markdown_updates + audio_updates | |
def change_language(language): | |
"""Change the language and reload phrases from multilingual datasets, reveal interface""" | |
new_phrases = load_multilingual_phrases(language, max_phrases=None) | |
# Reset visible rows to 10 | |
visible_count = min(10, len(new_phrases), MAX_COMPONENTS) | |
# Create separate updates for markdown and audio components | |
markdown_updates = [] | |
audio_updates = [] | |
for i in range(MAX_COMPONENTS): | |
if i < len(new_phrases) and i < visible_count: | |
markdown_updates.append(gr.update(value=f"**{i+1}. {new_phrases[i]}**", visible=True)) | |
audio_updates.append(gr.update(visible=True)) | |
elif i < len(new_phrases): | |
markdown_updates.append(gr.update(value=f"**{i+1}. {new_phrases[i]}**", visible=False)) | |
audio_updates.append(gr.update(visible=False)) | |
else: | |
markdown_updates.append(gr.update(value=f"**{i+1}. **", visible=False)) | |
audio_updates.append(gr.update(visible=False)) | |
# Reveal all interface elements when language is selected | |
reveal_updates = [ | |
gr.update(visible=True), # add_rows_btn | |
gr.update(visible=True), # record_dataset_btn | |
gr.update(visible=True), # dataset_status | |
gr.update(visible=True), # advanced_accordion | |
gr.update(visible=True), # save_rec_btn | |
gr.update(visible=True), # start_btn | |
gr.update(visible=True), # logs_box | |
] | |
# Return: [phrases_state, visible_state] + markdown_updates + audio_updates + reveal_updates | |
return [new_phrases, visible_count] + markdown_updates + audio_updates + reveal_updates | |
add_rows_btn.click( | |
add_more_rows, | |
inputs=[visible_rows_state, phrase_texts_state], | |
outputs=[visible_rows_state] + phrase_markdowns + rec_components | |
) | |
# Recording dataset creation button | |
record_dataset_btn = gr.Button("🎙️ Create Dataset from Recordings", variant="primary", visible=False) | |
def create_recording_dataset(*recordings_and_state): | |
"""Create dataset from visible recordings and phrases""" | |
try: | |
import soundfile as sf | |
# Extract recordings and state | |
recordings = recordings_and_state[:-1] # All except the last item (phrases) | |
phrases = recordings_and_state[-1] # Last item is phrases | |
dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user" | |
wav_dir = dataset_dir / "wavs" | |
wav_dir.mkdir(parents=True, exist_ok=True) | |
rows = [] | |
successful_recordings = 0 | |
# Process each recording | |
for i, rec in enumerate(recordings): | |
if rec is not None and i < len(phrases): | |
try: | |
sr, data = rec | |
out_path = wav_dir / f"recording_{i:04d}.wav" | |
sf.write(str(out_path), data, sr) | |
rows.append({"audio_path": str(out_path), "text": phrases[i]}) | |
successful_recordings += 1 | |
except Exception as e: | |
print(f"Error processing recording {i}: {e}") | |
if rows: | |
jsonl_path = dataset_dir / "recorded_data.jsonl" | |
_write_jsonl(rows, jsonl_path) | |
return f"✅ Dataset created successfully! {successful_recordings} recordings saved to {jsonl_path}" | |
else: | |
return "❌ No recordings found. Please record some audio first." | |
except Exception as e: | |
return f"❌ Error creating dataset: {str(e)}" | |
# Status display for dataset creation | |
dataset_status = gr.Textbox(label="Dataset Creation Status", interactive=False, visible=False) | |
record_dataset_btn.click( | |
create_recording_dataset, | |
inputs=rec_components + [phrase_texts_state], | |
outputs=[dataset_status] | |
) | |
# Advanced options accordion | |
with gr.Accordion("Advanced options", open=False, visible=False) as advanced_accordion: | |
base_model = gr.Textbox(value="mistralai/Voxtral-Mini-3B-2507", label="Base Voxtral model") | |
use_lora = gr.Checkbox(value=True, label="Use LoRA (parameter-efficient)") | |
with gr.Row(): | |
batch_size = gr.Number(value=2, precision=0, label="Batch size") | |
grad_accum = gr.Number(value=4, precision=0, label="Grad accum") | |
with gr.Row(): | |
learning_rate = gr.Number(value=5e-5, precision=6, label="Learning rate") | |
epochs = gr.Number(value=3.0, precision=2, label="Epochs") | |
with gr.Accordion("LoRA settings", open=False): | |
lora_r = gr.Number(value=8, precision=0, label="LoRA r") | |
lora_alpha = gr.Number(value=32, precision=0, label="LoRA alpha") | |
lora_dropout = gr.Number(value=0.0, precision=3, label="LoRA dropout") | |
freeze_audio_tower = gr.Checkbox(value=True, label="Freeze audio tower") | |
with gr.Row(): | |
train_count = gr.Number(value=100, precision=0, label="Train samples") | |
eval_count = gr.Number(value=50, precision=0, label="Eval samples") | |
repo_short = gr.Textbox(value=f"voxtral-finetune-{datetime.now().strftime('%Y%m%d_%H%M%S')}", label="Model repo (short)") | |
push_to_hub = gr.Checkbox(value=True, label="Push to HF Hub after training") | |
deploy_demo = gr.Checkbox(value=True, label="Deploy demo Space after push") | |
gr.Markdown("### Upload audio + transcripts (optional)") | |
upload_audio = gr.File(file_count="multiple", type="filepath", label="Upload WAV/FLAC files (optional)") | |
transcripts_box = gr.Textbox(lines=6, label="Transcripts (one per line, aligned with files)") | |
save_upload_btn = gr.Button("Save uploaded dataset") | |
def _collect_upload(files, txt): | |
lines = [s.strip() for s in (txt or "").splitlines() if s.strip()] | |
return _save_uploaded_dataset(files or [], lines) | |
# Removed - no longer needed since jsonl_out was removed | |
# save_upload_btn.click(_collect_upload, [upload_audio, transcripts_box], []) | |
# Save recordings button | |
save_rec_btn = gr.Button("Save recordings as dataset", visible=False) | |
def _collect_preloaded_recs(*recs_and_texts): | |
import soundfile as sf | |
dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user" | |
wav_dir = dataset_dir / "wavs" | |
wav_dir.mkdir(parents=True, exist_ok=True) | |
rows: list[dict] = [] | |
if not recs_and_texts: | |
jsonl_path = dataset_dir / "data.jsonl" | |
_write_jsonl(rows, jsonl_path) | |
return str(jsonl_path) | |
texts = recs_and_texts[-1] | |
recs = recs_and_texts[:-1] | |
for i, rec in enumerate(recs): | |
if rec is None: | |
continue | |
sr, data = rec | |
out_path = wav_dir / f"rec_{i:04d}.wav" | |
sf.write(str(out_path), data, sr) | |
# Use the full phrase list (ALL_PHRASES) instead of just PHRASES | |
label_text = (texts[i] if isinstance(texts, list) and i < len(texts) else (ALL_PHRASES[i] if i < len(ALL_PHRASES) else "")) | |
rows.append({"audio_path": str(out_path), "text": label_text}) | |
jsonl_path = dataset_dir / "data.jsonl" | |
_write_jsonl(rows, jsonl_path) | |
return str(jsonl_path) | |
save_rec_btn.click(_collect_preloaded_recs, rec_components + [phrase_texts_state], [jsonl_path_state]) | |
# Removed multilingual dataset sample section - phrases are now loaded automatically when language is selected | |
start_btn = gr.Button("Start Fine-tuning", visible=False) | |
logs_box = gr.Textbox(label="Logs", lines=20, visible=False) | |
start_btn.click( | |
start_voxtral_training, | |
inputs=[ | |
use_lora, base_model, repo_short, jsonl_path_state, train_count, eval_count, | |
batch_size, grad_accum, learning_rate, epochs, | |
lora_r, lora_alpha, lora_dropout, freeze_audio_tower, | |
push_to_hub, deploy_demo, | |
], | |
outputs=[logs_box], | |
) | |
# Connect language change to phrase reloading and interface reveal (placed after all components are defined) | |
language_selector.change( | |
change_language, | |
inputs=[language_selector], | |
outputs=[phrase_texts_state, visible_rows_state] + phrase_markdowns + rec_components + [ | |
add_rows_btn, record_dataset_btn, dataset_status, advanced_accordion, | |
save_rec_btn, start_btn, logs_box | |
] | |
) | |
if __name__ == "__main__": | |
server_port = int(os.environ.get("INTERFACE_PORT", "7860")) | |
server_name = os.environ.get("INTERFACE_HOST", "0.0.0.0") | |
demo.queue().launch(server_name=server_name, server_port=server_port, mcp_server=True, ssr_mode=False) | |