VoxFactory / interface.py
Joseph Pollack
adds dynamic and multilingual voxpopuli phrases instead, ssr_mode=false in gradio interfaces
b3ee71e unverified
raw
history blame
21.5 kB
#!/usr/bin/env python3
"""
Voxtral ASR Fine-tuning Interface
Features:
- Collect a personal voice dataset (upload WAV/FLAC + transcripts or record mic audio)
- Build a JSONL dataset ({audio_path, text}) at 16kHz
- Fine-tune Voxtral (LoRA or full) with streamed logs
- Push model to Hugging Face Hub
- Deploy a Voxtral ASR demo Space
Env tokens (optional):
- HF_WRITE_TOKEN or HF_TOKEN: write access token
- HF_READ_TOKEN: optional read token
- HF_USERNAME: fallback username if not derivable from token
"""
from __future__ import annotations
import os
import json
from pathlib import Path
from datetime import datetime
from typing import Any, Dict, Generator, Optional, Tuple
import gradio as gr
PROJECT_ROOT = Path(__file__).resolve().parent
def get_python() -> str:
import sys
return sys.executable or "python"
def get_username_from_token(token: str) -> Optional[str]:
try:
from huggingface_hub import HfApi # type: ignore
api = HfApi(token=token)
info = api.whoami()
if isinstance(info, dict):
return info.get("name") or info.get("username")
if isinstance(info, str):
return info
except Exception:
return None
return None
def run_command_stream(args: list[str], env: Dict[str, str], cwd: Optional[Path] = None) -> Generator[str, None, int]:
import subprocess
import shlex
yield f"$ {' '.join(shlex.quote(a) for a in ([get_python()] + args))}"
process = subprocess.Popen(
[get_python()] + args,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
env=env,
cwd=str(cwd or PROJECT_ROOT),
bufsize=1,
universal_newlines=True,
)
assert process.stdout is not None
for line in iter(process.stdout.readline, ""):
yield line.rstrip()
process.stdout.close()
code = process.wait()
yield f"[exit_code={code}]"
return code
def detect_nvidia_driver() -> Tuple[bool, str]:
"""Detect NVIDIA driver/GPU presence with multiple strategies.
Returns (available, human_message).
"""
# 1) Try torch CUDA
try:
import torch # type: ignore
if torch.cuda.is_available():
try:
num = torch.cuda.device_count()
names = [torch.cuda.get_device_name(i) for i in range(num)]
return True, f"NVIDIA GPU detected: {', '.join(names)}"
except Exception:
return True, "NVIDIA GPU detected (torch.cuda available)"
except Exception:
pass
# 2) Try NVML via pynvml
try:
import pynvml # type: ignore
try:
pynvml.nvmlInit()
cnt = pynvml.nvmlDeviceGetCount()
names = []
for i in range(cnt):
h = pynvml.nvmlDeviceGetHandleByIndex(i)
names.append(pynvml.nvmlDeviceGetName(h).decode("utf-8", errors="ignore"))
drv = pynvml.nvmlSystemGetDriverVersion().decode("utf-8", errors="ignore")
pynvml.nvmlShutdown()
if cnt > 0:
return True, f"NVIDIA driver {drv}; GPUs: {', '.join(names)}"
except Exception:
pass
except Exception:
pass
# 3) Try nvidia-smi
try:
import subprocess
res = subprocess.run(["nvidia-smi", "-L"], capture_output=True, text=True, timeout=3)
if res.returncode == 0 and res.stdout.strip():
return True, res.stdout.strip().splitlines()[0]
except Exception:
pass
return False, "No NVIDIA driver/GPU detected"
def duplicate_space_hint() -> str:
space_id = os.environ.get("SPACE_ID") or os.environ.get("HF_SPACE_ID")
if space_id:
space_url = f"https://huggingface.co/spaces/{space_id}"
dup_url = f"{space_url}?duplicate=true"
return (
f"ℹ️ No NVIDIA driver detected. If you're on Hugging Face Spaces, "
f"please duplicate this Space to GPU hardware: [Duplicate this Space]({dup_url})."
)
return (
"ℹ️ No NVIDIA driver detected. To enable training, run on a machine with an NVIDIA GPU/driver "
"or duplicate this Space on Hugging Face with GPU hardware."
)
def _write_jsonl(rows: list[dict], path: Path) -> Path:
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "w", encoding="utf-8") as f:
for r in rows:
f.write(json.dumps(r, ensure_ascii=False) + "\n")
return path
def _save_uploaded_dataset(files: list, transcripts: list[str]) -> str:
dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user"
dataset_dir.mkdir(parents=True, exist_ok=True)
rows: list[dict] = []
for i, fpath in enumerate(files or []):
if i >= len(transcripts):
break
rows.append({"audio_path": fpath, "text": transcripts[i] or ""})
jsonl_path = dataset_dir / "data.jsonl"
_write_jsonl(rows, jsonl_path)
return str(jsonl_path)
def _save_recordings(recordings: list[tuple[int, list]], transcripts: list[str]) -> str:
import soundfile as sf
dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user"
wav_dir = dataset_dir / "wavs"
wav_dir.mkdir(parents=True, exist_ok=True)
rows: list[dict] = []
for i, rec in enumerate(recordings or []):
if rec is None:
continue
if i >= len(transcripts):
break
sr, data = rec
out_path = wav_dir / f"rec_{i:04d}.wav"
sf.write(str(out_path), data, sr)
rows.append({"audio_path": str(out_path), "text": transcripts[i] or ""})
jsonl_path = dataset_dir / "data.jsonl"
_write_jsonl(rows, jsonl_path)
return str(jsonl_path)
def start_voxtral_training(
use_lora: bool,
base_model: str,
repo_short: str,
jsonl_path: str,
train_count: int,
eval_count: int,
batch_size: int,
grad_accum: int,
learning_rate: float,
epochs: float,
lora_r: int,
lora_alpha: int,
lora_dropout: float,
freeze_audio_tower: bool,
push_to_hub: bool,
deploy_demo: bool,
) -> Generator[str, None, None]:
env = os.environ.copy()
write_token = env.get("HF_WRITE_TOKEN") or env.get("HF_TOKEN")
read_token = env.get("HF_READ_TOKEN")
username = get_username_from_token(write_token or "") or env.get("HF_USERNAME") or ""
output_dir = PROJECT_ROOT / "outputs" / repo_short
# 1) Train
script = PROJECT_ROOT / ("scripts/train_lora.py" if use_lora else "scripts/train.py")
args = [str(script)]
if jsonl_path:
args += ["--dataset-jsonl", jsonl_path]
args += [
"--model-checkpoint", base_model,
"--train-count", str(train_count),
"--eval-count", str(eval_count),
"--batch-size", str(batch_size),
"--grad-accum", str(grad_accum),
"--learning-rate", str(learning_rate),
"--epochs", str(epochs),
"--output-dir", str(output_dir),
"--save-steps", "50",
]
if use_lora:
args += [
"--lora-r", str(lora_r),
"--lora-alpha", str(lora_alpha),
"--lora-dropout", str(lora_dropout),
]
if freeze_audio_tower:
args += ["--freeze-audio-tower"]
for line in run_command_stream(args, env):
yield line
# 2) Push to Hub
if push_to_hub:
repo_name = f"{username}/{repo_short}" if username else repo_short
push_args = [
str(PROJECT_ROOT / "scripts/push_to_huggingface.py"),
str(output_dir),
repo_name,
]
for line in run_command_stream(push_args, env):
yield line
# 3) Deploy demo Space
if deploy_demo and username:
deploy_args = [
str(PROJECT_ROOT / "scripts/deploy_demo_space.py"),
"--hf-token", write_token or "",
"--hf-username", username,
"--model-id", f"{username}/{repo_short}",
"--demo-type", "voxtral",
"--space-name", f"{repo_short}-demo",
]
for line in run_command_stream(deploy_args, env):
yield line
def load_voxpopuli_phrases(language="en", max_phrases=None, split="train"):
"""Load phrases from VoxPopuli dataset.
Args:
language: Language code (e.g., 'en', 'de', 'fr', etc.)
max_phrases: Maximum number of phrases to load (None for all available)
split: Dataset split to use ('train', 'validation', 'test')
Returns:
List of normalized text phrases
"""
try:
from datasets import load_dataset
import random
# Load the specified language dataset
ds = load_dataset("facebook/voxpopuli", language, split=split)
# Extract normalized text phrases
phrases = []
for example in ds:
text = example.get("normalized_text", "").strip()
if text and len(text) > 10: # Filter out very short phrases
phrases.append(text)
# Shuffle and limit if specified
if max_phrases:
phrases = random.sample(phrases, min(max_phrases, len(phrases)))
else:
# If no limit, shuffle the entire list
random.shuffle(phrases)
return phrases
except Exception as e:
print(f"Error loading VoxPopuli phrases: {e}")
# Fallback to some basic phrases if loading fails
return [
"The quick brown fox jumps over the lazy dog.",
"Please say your full name.",
"Today is a good day to learn something new.",
"Artificial intelligence helps with many tasks.",
"I enjoy reading books and listening to music.",
]
# Initialize phrases dynamically
VOXPOPULI_LANGUAGE = "en" # Default to English
ALL_PHRASES = load_voxpopuli_phrases(VOXPOPULI_LANGUAGE, max_phrases=None)
with gr.Blocks(title="Voxtral ASR Fine-tuning") as demo:
has_gpu, gpu_msg = detect_nvidia_driver()
if has_gpu:
gr.HTML(
f"""
<div style="background-color: rgba(59, 130, 246, 0.1); border: 1px solid rgba(59, 130, 246, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;">
<p style="color: rgb(59, 130, 246); margin: 0; font-size: 14px; font-weight: 600;">
✅ NVIDIA GPU ready — {gpu_msg}
</p>
<p style="color: rgb(59, 130, 246); margin: 6px 0 0; font-size: 12px;">
Set HF_WRITE_TOKEN/HF_TOKEN in environment to enable Hub push.
</p>
</div>
"""
)
else:
hint_md = duplicate_space_hint()
gr.HTML(
f"""
<div style="background-color: rgba(245, 158, 11, 0.1); border: 1px solid rgba(245, 158, 11, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;">
<p style="color: rgb(234, 88, 12); margin: 0; font-size: 14px; font-weight: 600;">
⚠️ No NVIDIA GPU/driver detected — training requires a GPU runtime
</p>
<p style="color: rgb(234, 88, 12); margin: 6px 0 0; font-size: 12px;">
{hint_md}
</p>
</div>
"""
)
gr.Markdown("""
# 🎙️ Voxtral ASR Fine-tuning
Read the phrases below and record them. Then start fine-tuning.
""")
jsonl_out = gr.Textbox(label="Dataset JSONL path", interactive=False, visible=True)
# Language selection for VoxPopuli phrases
voxpopuli_lang = gr.Dropdown(
choices=["en", "de", "fr", "es", "pl", "it", "ro", "hu", "cs", "nl", "fi", "hr", "sk", "sl", "et", "lt"],
value="en",
label="VoxPopuli Language",
info="Select language for phrases from VoxPopuli dataset"
)
# Recording grid with dynamic text readouts
phrase_texts_state = gr.State(ALL_PHRASES)
visible_rows_state = gr.State(10) # Start with 10 visible rows
max_rows = len(ALL_PHRASES) # No cap on total rows
phrase_markdowns: list[gr.Markdown] = []
rec_components = []
def create_recording_grid(phrases, visible_count=10):
"""Create recording grid components dynamically"""
markdowns = []
recordings = []
for idx, phrase in enumerate(phrases):
visible = idx < visible_count
md = gr.Markdown(f"**{idx+1}. {phrase}**", visible=visible)
markdowns.append(md)
comp = gr.Audio(sources="microphone", type="numpy", label=f"Recording {idx+1}", visible=visible)
recordings.append(comp)
return markdowns, recordings
# Initial grid creation
with gr.Column():
phrase_markdowns, rec_components = create_recording_grid(ALL_PHRASES, 10)
# Add more rows button
add_rows_btn = gr.Button("➕ Add 10 More Rows", variant="secondary")
def add_more_rows(current_visible, current_phrases):
"""Add 10 more rows by making them visible"""
new_visible = min(current_visible + 10, len(current_phrases))
visibility_updates = []
for i in range(len(current_phrases)):
if i < new_visible:
visibility_updates.append(gr.update(visible=True))
else:
visibility_updates.append(gr.update(visible=False))
return [new_visible] + visibility_updates
def change_language(language):
"""Change the language and reload phrases from VoxPopuli"""
new_phrases = load_voxpopuli_phrases(language, max_phrases=None)
# Reset visible rows to 10
visible_count = min(10, len(new_phrases))
# Create combined updates for existing components (up to current length)
current_len = len(phrase_markdowns)
combined_updates = []
# Update existing components
for i in range(current_len):
if i < len(new_phrases):
if i < visible_count:
combined_updates.append(gr.update(value=f"**{i+1}. {new_phrases[i]}**", visible=True))
else:
combined_updates.append(gr.update(visible=False))
else:
combined_updates.append(gr.update(visible=False))
# If we have more phrases than components, we can't update them via Gradio
# The interface will need to be reloaded for significantly different phrase counts
return [new_phrases, visible_count] + combined_updates
# Connect language change to phrase reloading
voxpopuli_lang.change(
change_language,
inputs=[voxpopuli_lang],
outputs=[phrase_texts_state, visible_rows_state] + phrase_markdowns + rec_components
)
add_rows_btn.click(
add_more_rows,
inputs=[visible_rows_state, phrase_texts_state],
outputs=[visible_rows_state] + phrase_markdowns + rec_components
)
# Advanced options accordion
with gr.Accordion("Advanced options", open=False):
base_model = gr.Textbox(value="mistralai/Voxtral-Mini-3B-2507", label="Base Voxtral model")
use_lora = gr.Checkbox(value=True, label="Use LoRA (parameter-efficient)")
with gr.Row():
batch_size = gr.Number(value=2, precision=0, label="Batch size")
grad_accum = gr.Number(value=4, precision=0, label="Grad accum")
with gr.Row():
learning_rate = gr.Number(value=5e-5, precision=6, label="Learning rate")
epochs = gr.Number(value=3.0, precision=2, label="Epochs")
with gr.Accordion("LoRA settings", open=False):
lora_r = gr.Number(value=8, precision=0, label="LoRA r")
lora_alpha = gr.Number(value=32, precision=0, label="LoRA alpha")
lora_dropout = gr.Number(value=0.0, precision=3, label="LoRA dropout")
freeze_audio_tower = gr.Checkbox(value=True, label="Freeze audio tower")
with gr.Row():
train_count = gr.Number(value=100, precision=0, label="Train samples")
eval_count = gr.Number(value=50, precision=0, label="Eval samples")
repo_short = gr.Textbox(value=f"voxtral-finetune-{datetime.now().strftime('%Y%m%d_%H%M%S')}", label="Model repo (short)")
push_to_hub = gr.Checkbox(value=True, label="Push to HF Hub after training")
deploy_demo = gr.Checkbox(value=True, label="Deploy demo Space after push")
gr.Markdown("### Upload audio + transcripts (optional)")
upload_audio = gr.File(file_count="multiple", type="filepath", label="Upload WAV/FLAC files (optional)")
transcripts_box = gr.Textbox(lines=6, label="Transcripts (one per line, aligned with files)")
save_upload_btn = gr.Button("Save uploaded dataset")
def _collect_upload(files, txt):
lines = [s.strip() for s in (txt or "").splitlines() if s.strip()]
return _save_uploaded_dataset(files or [], lines)
save_upload_btn.click(_collect_upload, [upload_audio, transcripts_box], [jsonl_out])
# Save recordings button
save_rec_btn = gr.Button("Save recordings as dataset")
def _collect_preloaded_recs(*recs_and_texts):
import soundfile as sf
dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user"
wav_dir = dataset_dir / "wavs"
wav_dir.mkdir(parents=True, exist_ok=True)
rows: list[dict] = []
if not recs_and_texts:
jsonl_path = dataset_dir / "data.jsonl"
_write_jsonl(rows, jsonl_path)
return str(jsonl_path)
texts = recs_and_texts[-1]
recs = recs_and_texts[:-1]
for i, rec in enumerate(recs):
if rec is None:
continue
sr, data = rec
out_path = wav_dir / f"rec_{i:04d}.wav"
sf.write(str(out_path), data, sr)
# Use the full phrase list (ALL_PHRASES) instead of just PHRASES
label_text = (texts[i] if isinstance(texts, list) and i < len(texts) else (ALL_PHRASES[i] if i < len(ALL_PHRASES) else ""))
rows.append({"audio_path": str(out_path), "text": label_text})
jsonl_path = dataset_dir / "data.jsonl"
_write_jsonl(rows, jsonl_path)
return str(jsonl_path)
save_rec_btn.click(_collect_preloaded_recs, rec_components + [phrase_texts_state], [jsonl_out])
# Quick sample from VoxPopuli (few random rows)
with gr.Row():
vp_lang = gr.Dropdown(choices=["en", "de", "fr", "es", "it", "pl", "ro", "hu", "cs", "nl", "fi", "hr", "sk", "sl", "et", "lt"], value="en", label="VoxPopuli language")
vp_samples = gr.Number(value=20, precision=0, label="Num samples")
vp_split = gr.Dropdown(choices=["train", "validation", "test"], value="train", label="Split")
vp_btn = gr.Button("Use VoxPopuli sample")
def _collect_voxpopuli(lang_code: str, num_samples: int, split: str):
import sys
# Workaround for dill on Python 3.13 expecting __main__ during import
if "__main__" not in sys.modules:
sys.modules["__main__"] = sys.modules[__name__]
from datasets import load_dataset, Audio # type: ignore
import random
ds = load_dataset("facebook/voxpopuli", lang_code, split=split)
ds = ds.cast_column("audio", Audio(sampling_rate=16000))
# shuffle and select
total = len(ds)
k = max(1, min(int(num_samples or 1), total))
ds = ds.shuffle(seed=random.randint(1, 10_000))
ds_sel = ds.select(range(k))
dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user"
rows: list[dict] = []
texts: list[str] = []
for ex in ds_sel:
audio = ex.get("audio") or {}
path = audio.get("path")
text = ex.get("normalized_text") or ex.get("raw_text") or ""
if path and text is not None:
rows.append({"audio_path": path, "text": text})
texts.append(str(text))
jsonl_path = dataset_dir / "data.jsonl"
_write_jsonl(rows, jsonl_path)
# Build markdown content updates for on-screen prompts
combined_updates = []
for i in range(len(phrase_markdowns)):
t = texts[i] if i < len(texts) else ""
if i < len(texts):
combined_updates.append(gr.update(value=f"**{i+1}. {t}**", visible=True))
else:
combined_updates.append(gr.update(visible=False))
return (str(jsonl_path), texts, *combined_updates)
vp_btn.click(
_collect_voxpopuli,
[vp_lang, vp_samples, vp_split],
[jsonl_out, phrase_texts_state] + phrase_markdowns,
)
start_btn = gr.Button("Start Fine-tuning")
logs_box = gr.Textbox(label="Logs", lines=20)
start_btn.click(
start_voxtral_training,
inputs=[
use_lora, base_model, repo_short, jsonl_out, train_count, eval_count,
batch_size, grad_accum, learning_rate, epochs,
lora_r, lora_alpha, lora_dropout, freeze_audio_tower,
push_to_hub, deploy_demo,
],
outputs=[logs_box],
)
if __name__ == "__main__":
server_port = int(os.environ.get("INTERFACE_PORT", "7860"))
server_name = os.environ.get("INTERFACE_HOST", "0.0.0.0")
demo.queue().launch(server_name=server_name, server_port=server_port, mcp_server=True, ssr_mode=False)