Spaces:
Running
Running
#!/usr/bin/env python3 | |
import torch | |
from datasets import load_dataset, Audio | |
from transformers import ( | |
VoxtralForConditionalGeneration, | |
VoxtralProcessor, | |
Trainer, | |
TrainingArguments, | |
) | |
import jiwer | |
class VoxtralDataCollator: | |
"""Data collator for Voxtral STT training - processes audio and text.""" | |
def __init__(self, processor, model_id): | |
self.processor = processor | |
self.model_id = model_id | |
self.pad_id = processor.tokenizer.pad_token_id | |
def __call__(self, features): | |
""" | |
Each feature should have: | |
- "audio": raw audio (whatever your processor expects) | |
- "text": transcription string | |
""" | |
texts = [f["text"] for f in features] | |
audios = [f["audio"]["array"] for f in features] | |
# 1) Build the PROMPT part: [AUDIO]…[AUDIO] <transcribe> | |
prompt = self.processor.apply_transcription_request( # (same method you used) | |
language="en", | |
model_id=self.model_id if hasattr(self, "model_id") else None, | |
audio=audios, | |
format=["WAV"] * len(audios), | |
return_tensors="pt", | |
) | |
# prompt["input_ids"]: shape [B, L_prompt] | |
# keep any extra fields (e.g., audio features) to pass through to the model | |
passthrough = {k: v for k, v in prompt.items() | |
if k not in ("input_ids", "attention_mask")} | |
prompt_ids = prompt["input_ids"] # [B, Lp] | |
prompt_attn = prompt["attention_mask"] # [B, Lp] | |
B = prompt_ids.size(0) | |
tok = self.processor.tokenizer | |
# 2) Tokenize transcriptions WITHOUT padding; we'll pad after concatenation | |
text_tok = tok( | |
texts, | |
add_special_tokens=False, | |
padding=False, | |
truncation=True, | |
max_length=256, | |
return_tensors=None, | |
) | |
text_ids_list = text_tok["input_ids"] | |
# 3) Concatenate: input_ids = [PROMPT] + [TEXT] | |
input_ids, attention_mask, labels = [], [], [] | |
for i in range(B): | |
p_ids = prompt_ids[i].tolist() | |
p_att = prompt_attn[i].tolist() | |
t_ids = text_ids_list[i] | |
ids = p_ids + t_ids | |
attn = p_att + [1] * len(t_ids) | |
# labels: mask prompt tokens, learn only on text tokens | |
lab = [-100] * len(p_ids) + t_ids | |
input_ids.append(ids) | |
attention_mask.append(attn) | |
labels.append(lab) | |
# 4) Pad to max length in batch | |
pad_id = tok.pad_token_id if tok.pad_token_id is not None else tok.eos_token_id | |
max_len = max(len(x) for x in input_ids) | |
def pad_to(seq, fill, L): | |
return seq + [fill] * (L - len(seq)) | |
input_ids = [pad_to(x, pad_id, max_len) for x in input_ids] | |
attention_mask = [pad_to(x, 0, max_len) for x in attention_mask] | |
labels = [pad_to(x, -100, max_len) for x in labels] | |
batch = { | |
"input_ids": torch.tensor(input_ids, dtype=torch.long), | |
"attention_mask": torch.tensor(attention_mask, dtype=torch.long), | |
"labels": torch.tensor(labels, dtype=torch.long), | |
} | |
# 5) Include processor outputs needed by the model (e.g., audio features) | |
for k, v in passthrough.items(): | |
batch[k] = v | |
return batch | |
def load_and_prepare_dataset(): | |
"""Load and prepare dataset for training.""" | |
dataset_name = "hf-audio/esb-datasets-test-only-sorted" | |
dataset_config = "voxpopuli" | |
print(f"Loading dataset: {dataset_name}/{dataset_config}") | |
dataset = load_dataset(dataset_name, dataset_config, split="test") | |
# Cast audio to 16kHz (required for Voxtral) | |
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) | |
train_dataset = dataset.select(range(100)) | |
eval_dataset = dataset.select(range(100, 150)) | |
return train_dataset, eval_dataset | |
def main(): | |
# Configuration | |
model_checkpoint = "mistralai/Voxtral-Mini-3B-2507" | |
output_dir = "./voxtral-finetuned" | |
# Set device | |
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {torch_device}") | |
# Load processor and model | |
print("Loading processor and model...") | |
processor = VoxtralProcessor.from_pretrained(model_checkpoint) | |
model = VoxtralForConditionalGeneration.from_pretrained( | |
model_checkpoint, | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
) | |
# Load and prepare dataset | |
train_dataset, eval_dataset = load_and_prepare_dataset() | |
# Setup data collator | |
data_collator = VoxtralDataCollator(processor, model_checkpoint) | |
# Simple training arguments | |
training_args = TrainingArguments( | |
output_dir=output_dir, | |
per_device_train_batch_size=2, | |
per_device_eval_batch_size=4, | |
gradient_accumulation_steps=4, | |
learning_rate=5e-5, | |
num_train_epochs=3, | |
bf16=True, | |
logging_steps=10, | |
eval_steps=50 if eval_dataset else None, | |
save_steps=50, | |
eval_strategy="steps" if eval_dataset else "no", | |
save_strategy="steps", | |
report_to="none", | |
remove_unused_columns=False, | |
dataloader_num_workers=1, | |
) | |
# Setup trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
data_collator=data_collator, | |
) | |
# Start training | |
print("Starting training...") | |
trainer.train() | |
# Save model and processor | |
print(f"Saving model to {output_dir}") | |
trainer.save_model() | |
processor.save_pretrained(output_dir) | |
# Final evaluation | |
if eval_dataset: | |
results = trainer.evaluate() | |
print(f"Final evaluation results: {results}") | |
print("Training completed successfully!") | |
if __name__ == "__main__": | |
main() |