File size: 30,702 Bytes
be9aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc0e217
fb12450
bc0e217
fb12450
 
b3ee71e
 
 
fb12450
b3ee71e
 
 
fb12450
b3ee71e
bc0e217
 
 
fb12450
 
 
 
 
 
 
 
 
 
 
 
 
bc0e217
 
fb12450
 
bc0e217
b3ee71e
fb12450
 
 
 
 
b3ee71e
 
bc0e217
fb12450
e83891f
fb12450
b3ee71e
fb12450
bc0e217
b3ee71e
fb12450
 
bc0e217
fb12450
 
 
 
 
 
 
e83891f
bc0e217
fb12450
bc0e217
 
 
fb12450
bc0e217
fb12450
bc0e217
b3ee71e
fb12450
 
 
 
b3ee71e
fb12450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc0e217
fb12450
 
 
 
bc0e217
fb12450
b3ee71e
 
bc0e217
 
be9aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb12450
bc0e217
 
fb12450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc0e217
b3ee71e
bc0e217
fb12450
b3ee71e
 
be9aa9f
b3ee71e
 
e83891f
 
 
be9aa9f
 
b3ee71e
e83891f
 
b3ee71e
 
e83891f
 
 
 
b3ee71e
 
 
 
 
 
be9aa9f
e83891f
b3ee71e
 
 
 
 
 
e83891f
 
fb12450
 
 
 
e83891f
 
fb12450
 
b3ee71e
fb12450
 
e83891f
fb12450
 
b3ee71e
 
bc0e217
 
b3ee71e
e83891f
b3ee71e
fb12450
 
 
 
e83891f
 
fb12450
 
e83891f
fb12450
 
b3ee71e
fb12450
 
b3ee71e
fb12450
 
b3ee71e
 
bc0e217
b3ee71e
bc0e217
b3ee71e
 
 
 
 
 
 
 
be9aa9f
e83891f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be9aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ee71e
 
be9aa9f
 
 
 
 
 
 
bc0e217
be9aa9f
fb12450
be9aa9f
 
bc0e217
 
 
fb12450
bc0e217
be9aa9f
bc0e217
fb12450
 
bc0e217
 
fb12450
 
 
 
bc0e217
 
fb12450
e83891f
 
fb12450
e83891f
fb12450
 
e83891f
fb12450
 
 
e83891f
 
fb12450
 
e83891f
 
 
fb12450
 
e83891f
fb12450
 
 
 
 
bc0e217
fb12450
 
 
 
 
bc0e217
 
 
 
 
 
fb12450
 
 
 
 
e83891f
bc0e217
 
fb12450
 
bc0e217
fb12450
 
 
 
bc0e217
 
 
 
fb12450
bc0e217
fb12450
 
bc0e217
 
be9aa9f
 
bc0e217
be9aa9f
 
bc0e217
fb12450
 
 
e83891f
be9aa9f
b3ee71e
fb12450
 
b3ee71e
fb12450
 
 
 
b3ee71e
 
be9aa9f
 
bc0e217
be9aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ee71e
be9aa9f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
#!/usr/bin/env python3
"""
Voxtral ASR Fine-tuning Interface

Features:
- Collect a personal voice dataset (upload WAV/FLAC + transcripts or record mic audio)
- Build a JSONL dataset ({audio_path, text}) at 16kHz
- Fine-tune Voxtral (LoRA or full) with streamed logs
- Push model to Hugging Face Hub
- Deploy a Voxtral ASR demo Space

Env tokens (optional):
- HF_WRITE_TOKEN or HF_TOKEN: write access token
- HF_READ_TOKEN: optional read token
- HF_USERNAME: fallback username if not derivable from token
"""

from __future__ import annotations

import os
import json
from pathlib import Path
from datetime import datetime
from typing import Any, Dict, Generator, Optional, Tuple

import gradio as gr

PROJECT_ROOT = Path(__file__).resolve().parent


def get_python() -> str:
    import sys
    return sys.executable or "python"


def get_username_from_token(token: str) -> Optional[str]:
    try:
        from huggingface_hub import HfApi  # type: ignore
        api = HfApi(token=token)
        info = api.whoami()
        if isinstance(info, dict):
            return info.get("name") or info.get("username")
        if isinstance(info, str):
            return info
    except Exception:
        return None
    return None


def run_command_stream(args: list[str], env: Dict[str, str], cwd: Optional[Path] = None) -> Generator[str, None, int]:
    import subprocess
    import shlex
    yield f"$ {' '.join(shlex.quote(a) for a in ([get_python()] + args))}"
    process = subprocess.Popen(
        [get_python()] + args,
        stdout=subprocess.PIPE,
        stderr=subprocess.STDOUT,
        text=True,
        env=env,
        cwd=str(cwd or PROJECT_ROOT),
        bufsize=1,
        universal_newlines=True,
    )
    assert process.stdout is not None
    for line in iter(process.stdout.readline, ""):
        yield line.rstrip()
    process.stdout.close()
    code = process.wait()
    yield f"[exit_code={code}]"
    return code


def detect_nvidia_driver() -> Tuple[bool, str]:
    """Detect NVIDIA driver/GPU presence with multiple strategies.

    Returns (available, human_message).
    """
    # 1) Try torch CUDA
    try:
        import torch  # type: ignore
        if torch.cuda.is_available():
            try:
                num = torch.cuda.device_count()
                names = [torch.cuda.get_device_name(i) for i in range(num)]
                return True, f"NVIDIA GPU detected: {', '.join(names)}"
            except Exception:
                return True, "NVIDIA GPU detected (torch.cuda available)"
    except Exception:
        pass

    # 2) Try NVML via pynvml
    try:
        import pynvml  # type: ignore
        try:
            pynvml.nvmlInit()
            cnt = pynvml.nvmlDeviceGetCount()
            names = []
            for i in range(cnt):
                h = pynvml.nvmlDeviceGetHandleByIndex(i)
                names.append(pynvml.nvmlDeviceGetName(h).decode("utf-8", errors="ignore"))
            drv = pynvml.nvmlSystemGetDriverVersion().decode("utf-8", errors="ignore")
            pynvml.nvmlShutdown()
            if cnt > 0:
                return True, f"NVIDIA driver {drv}; GPUs: {', '.join(names)}"
        except Exception:
            pass
    except Exception:
        pass

    # 3) Try nvidia-smi
    try:
        import subprocess
        res = subprocess.run(["nvidia-smi", "-L"], capture_output=True, text=True, timeout=3)
        if res.returncode == 0 and res.stdout.strip():
            return True, res.stdout.strip().splitlines()[0]
    except Exception:
        pass

    return False, "No NVIDIA driver/GPU detected"


def duplicate_space_hint() -> str:
    space_id = os.environ.get("SPACE_ID") or os.environ.get("HF_SPACE_ID")
    if space_id:
        space_url = f"https://huggingface.co/spaces/{space_id}"
        dup_url = f"{space_url}?duplicate=true"
        return (
            f"ℹ️ No NVIDIA driver detected. If you're on Hugging Face Spaces, "
            f"please duplicate this Space to GPU hardware: [Duplicate this Space]({dup_url})."
        )
    return (
        "ℹ️ No NVIDIA driver detected. To enable training, run on a machine with an NVIDIA GPU/driver "
        "or duplicate this Space on Hugging Face with GPU hardware."
    )


def _write_jsonl(rows: list[dict], path: Path) -> Path:
    path.parent.mkdir(parents=True, exist_ok=True)
    with open(path, "w", encoding="utf-8") as f:
        for r in rows:
            f.write(json.dumps(r, ensure_ascii=False) + "\n")
    return path


def _save_uploaded_dataset(files: list, transcripts: list[str]) -> str:
    dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user"
    dataset_dir.mkdir(parents=True, exist_ok=True)
    rows: list[dict] = []
    for i, fpath in enumerate(files or []):
        if i >= len(transcripts):
            break
        rows.append({"audio_path": fpath, "text": transcripts[i] or ""})
    jsonl_path = dataset_dir / "data.jsonl"
    _write_jsonl(rows, jsonl_path)
    return str(jsonl_path)


def _save_recordings(recordings: list[tuple[int, list]], transcripts: list[str]) -> str:
    import soundfile as sf
    dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user"
    wav_dir = dataset_dir / "wavs"
    wav_dir.mkdir(parents=True, exist_ok=True)
    rows: list[dict] = []
    for i, rec in enumerate(recordings or []):
        if rec is None:
            continue
        if i >= len(transcripts):
            break
        sr, data = rec
        out_path = wav_dir / f"rec_{i:04d}.wav"
        sf.write(str(out_path), data, sr)
        rows.append({"audio_path": str(out_path), "text": transcripts[i] or ""})
    jsonl_path = dataset_dir / "data.jsonl"
    _write_jsonl(rows, jsonl_path)
    return str(jsonl_path)


def start_voxtral_training(
    use_lora: bool,
    base_model: str,
    repo_short: str,
    jsonl_path: str,
    train_count: int,
    eval_count: int,
    batch_size: int,
    grad_accum: int,
    learning_rate: float,
    epochs: float,
    lora_r: int,
    lora_alpha: int,
    lora_dropout: float,
    freeze_audio_tower: bool,
    push_to_hub: bool,
    deploy_demo: bool,
) -> Generator[str, None, None]:
    env = os.environ.copy()
    write_token = env.get("HF_WRITE_TOKEN") or env.get("HF_TOKEN")
    read_token = env.get("HF_READ_TOKEN")
    username = get_username_from_token(write_token or "") or env.get("HF_USERNAME") or ""
    output_dir = PROJECT_ROOT / "outputs" / repo_short

    # 1) Train
    script = PROJECT_ROOT / ("scripts/train_lora.py" if use_lora else "scripts/train.py")
    args = [str(script)]
    if jsonl_path:
        args += ["--dataset-jsonl", jsonl_path]
    args += [
        "--model-checkpoint", base_model,
        "--train-count", str(train_count),
        "--eval-count", str(eval_count),
        "--batch-size", str(batch_size),
        "--grad-accum", str(grad_accum),
        "--learning-rate", str(learning_rate),
        "--epochs", str(epochs),
        "--output-dir", str(output_dir),
        "--save-steps", "50",
    ]
    if use_lora:
        args += [
            "--lora-r", str(lora_r),
            "--lora-alpha", str(lora_alpha),
            "--lora-dropout", str(lora_dropout),
        ]
        if freeze_audio_tower:
            args += ["--freeze-audio-tower"]
    for line in run_command_stream(args, env):
        yield line

    # 2) Push to Hub
    if push_to_hub:
        repo_name = f"{username}/{repo_short}" if username else repo_short
        push_args = [
            str(PROJECT_ROOT / "scripts/push_to_huggingface.py"),
            str(output_dir),
            repo_name,
        ]
        for line in run_command_stream(push_args, env):
            yield line

    # 3) Deploy demo Space
    if deploy_demo and username:
        deploy_args = [
            str(PROJECT_ROOT / "scripts/deploy_demo_space.py"),
            "--hf-token", write_token or "",
            "--hf-username", username,
            "--model-id", f"{username}/{repo_short}",
            "--demo-type", "voxtral",
            "--space-name", f"{repo_short}-demo",
        ]
        for line in run_command_stream(deploy_args, env):
            yield line


def load_multilingual_phrases(language="en", max_phrases=None, split="train"):
    """Load phrases from NVIDIA Granary dataset.

    Uses the high-quality Granary dataset which contains speech recognition
    and translation data for 25 European languages.

    Args:
        language: Language code (e.g., 'en', 'de', 'fr', etc.)
        max_phrases: Maximum number of phrases to load (None for default 1000)
        split: Dataset split to use ('train', 'validation', 'test')

    Returns:
        List of transcription phrases from Granary dataset
    """
    from datasets import load_dataset
    import random

    # Default to 1000 phrases if not specified
    if max_phrases is None:
        max_phrases = 1000

    # Language code mapping for Granary dataset
    # Granary supports these language codes directly
    granary_supported_langs = {
        "en": "en", "de": "de", "fr": "fr", "es": "es", "it": "it",
        "pl": "pl", "pt": "pt", "nl": "nl", "ru": "ru", "ar": "ar",
        "zh": "zh", "ja": "ja", "ko": "ko", "da": "da", "sv": "sv",
        "no": "no", "fi": "fi", "et": "et", "lv": "lv", "lt": "lt",
        "sl": "sl", "sk": "sk", "cs": "cs", "hr": "hr", "bg": "bg",
        "uk": "uk", "ro": "ro", "hu": "hu", "el": "el", "mt": "mt"
    }

    # Map input language to Granary configuration
    granary_lang = granary_supported_langs.get(language, "en")  # Default to English

    try:
        print(f"Loading phrases from NVIDIA Granary dataset for language: {language}")

        # Load Granary dataset with ASR (speech recognition) split
        # Use streaming to handle large datasets efficiently
        ds = load_dataset("nvidia/Granary", granary_lang, split="asr", streaming=True)

        phrases = []
        count = 0
        seen_phrases = set()

        # Sample phrases from the dataset
        for example in ds:
            if count >= max_phrases:
                break

            # Extract the text transcription
            text = example.get("text", "").strip()

            # Filter for quality phrases
            if (text and
                len(text) > 10 and  # Minimum length
                len(text) < 200 and  # Maximum length to avoid very long utterances
                text not in seen_phrases and  # Avoid duplicates
                not text.isdigit() and  # Avoid pure numbers
                not all(c in "0123456789., " for c in text)):  # Avoid mostly numeric

                phrases.append(text)
                seen_phrases.add(text)
                count += 1

        if phrases:
            # Shuffle the phrases for variety
            random.shuffle(phrases)
            print(f"Successfully loaded {len(phrases)} phrases from Granary dataset for {language}")
            return phrases

        else:
            print(f"No suitable phrases found in Granary dataset for {language}")
            raise Exception("No phrases found")

    except Exception as e:
        print(f"Granary dataset loading failed for {language}: {e}")

        # Fallback to basic phrases if Granary fails
        print("Using fallback phrases")
        fallback_phrases = [
            "The quick brown fox jumps over the lazy dog.",
            "Please say your full name.",
            "Today is a good day to learn something new.",
            "Artificial intelligence helps with many tasks.",
            "I enjoy reading books and listening to music.",
            "This is a sample sentence for testing speech.",
            "Speak clearly and at a normal pace.",
            "Numbers like one, two, three are easy to say.",
            "The weather is sunny with a chance of rain.",
            "Thank you for taking the time to help.",
            "Hello, how are you today?",
            "I would like to order a pizza.",
            "The meeting is scheduled for tomorrow.",
            "Please call me back as soon as possible.",
            "Thank you for your assistance.",
            "Can you help me with this problem?",
            "I need to make a reservation.",
            "The weather looks beautiful outside.",
            "Let's go for a walk in the park.",
            "I enjoy listening to classical music.",
        ]

        if max_phrases:
            fallback_phrases = random.sample(fallback_phrases, min(max_phrases, len(fallback_phrases)))
        else:
            random.shuffle(fallback_phrases)

        return fallback_phrases

# Initialize phrases dynamically
DEFAULT_LANGUAGE = "en"  # Default to English
ALL_PHRASES = load_multilingual_phrases(DEFAULT_LANGUAGE, max_phrases=None)

with gr.Blocks(title="Voxtral ASR Fine-tuning") as demo:
    has_gpu, gpu_msg = detect_nvidia_driver()
    if has_gpu:
        gr.HTML(
            f"""
            <div style="background-color: rgba(59, 130, 246, 0.1); border: 1px solid rgba(59, 130, 246, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;">
                <p style="color: rgb(59, 130, 246); margin: 0; font-size: 14px; font-weight: 600;">
                    βœ… NVIDIA GPU ready β€” {gpu_msg}
                </p>
                <p style="color: rgb(59, 130, 246); margin: 6px 0 0; font-size: 12px;">
                    Set HF_WRITE_TOKEN/HF_TOKEN in environment to enable Hub push.
                </p>
            </div>
            """
        )
    else:
        hint_md = duplicate_space_hint()
        gr.HTML(
            f"""
            <div style="background-color: rgba(245, 158, 11, 0.1); border: 1px solid rgba(245, 158, 11, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;">
                <p style="color: rgb(234, 88, 12); margin: 0; font-size: 14px; font-weight: 600;">
                    ⚠️ No NVIDIA GPU/driver detected β€” training requires a GPU runtime
                </p>
                <p style="color: rgb(234, 88, 12); margin: 6px 0 0; font-size: 12px;">
                    {hint_md}
                </p>
            </div>
            """
        )

    gr.Markdown("""
    # πŸŽ™οΈ Voxtral ASR Fine-tuning
    Read the phrases below and record them. Then start fine-tuning.
    """)

    jsonl_out = gr.Textbox(label="Dataset JSONL path", interactive=False, visible=True)

    # Language selection for NVIDIA Granary phrases
    language_selector = gr.Dropdown(
        choices=[
            ("English", "en"),
            ("German", "de"),
            ("French", "fr"),
            ("Spanish", "es"),
            ("Italian", "it"),
            ("Portuguese", "pt"),
            ("Polish", "pl"),
            ("Dutch", "nl"),
            ("Russian", "ru"),
            ("Arabic", "ar"),
            ("Chinese", "zh"),
            ("Japanese", "ja"),
            ("Korean", "ko"),
            ("Danish", "da"),
            ("Swedish", "sv"),
            ("Norwegian", "no"),
            ("Finnish", "fi"),
            ("Estonian", "et"),
            ("Latvian", "lv"),
            ("Lithuanian", "lt"),
            ("Slovenian", "sl"),
            ("Slovak", "sk"),
            ("Czech", "cs"),
            ("Croatian", "hr"),
            ("Bulgarian", "bg"),
            ("Ukrainian", "uk"),
            ("Romanian", "ro"),
            ("Hungarian", "hu"),
            ("Greek", "el"),
            ("Maltese", "mt")
        ],
        value="en",
        label="Language for Speech Phrases",
        info="Select language for authentic phrases from NVIDIA Granary dataset (25 European languages)"
    )

    # Recording grid with dynamic text readouts
    phrase_texts_state = gr.State(ALL_PHRASES)
    visible_rows_state = gr.State(10)  # Start with 10 visible rows
    MAX_COMPONENTS = 100  # Fixed maximum number of components

    # Create fixed number of components upfront
    phrase_markdowns: list[gr.Markdown] = []
    rec_components = []

    def create_recording_grid(max_components=MAX_COMPONENTS):
        """Create recording grid components with fixed maximum"""
        markdowns = []
        recordings = []
        for idx in range(max_components):
            visible = idx < 10  # Only first 10 visible initially
            phrase_text = ALL_PHRASES[idx] if idx < len(ALL_PHRASES) else ""
            md = gr.Markdown(f"**{idx+1}. {phrase_text}**", visible=visible)
            markdowns.append(md)
            comp = gr.Audio(sources="microphone", type="numpy", label=f"Recording {idx+1}", visible=visible)
            recordings.append(comp)
        return markdowns, recordings

    # Initial grid creation
    with gr.Column():
        phrase_markdowns, rec_components = create_recording_grid(MAX_COMPONENTS)

    # Add more rows button
    add_rows_btn = gr.Button("βž• Add 10 More Rows", variant="secondary")

    def add_more_rows(current_visible, current_phrases):
        """Add 10 more rows by making them visible"""
        new_visible = min(current_visible + 10, MAX_COMPONENTS, len(current_phrases))

        # Create updates for all MAX_COMPONENTS (both markdown and audio components)
        markdown_updates = []
        audio_updates = []

        for i in range(MAX_COMPONENTS):
            if i < len(current_phrases) and i < new_visible:
                markdown_updates.append(gr.update(visible=True))
                audio_updates.append(gr.update(visible=True))
            else:
                markdown_updates.append(gr.update(visible=False))
                audio_updates.append(gr.update(visible=False))

        # Return: [state] + markdown_updates + audio_updates
        return [new_visible] + markdown_updates + audio_updates

    def change_language(language):
        """Change the language and reload phrases from multilingual datasets"""
        new_phrases = load_multilingual_phrases(language, max_phrases=None)
        # Reset visible rows to 10
        visible_count = min(10, len(new_phrases), MAX_COMPONENTS)

        # Create separate updates for markdown and audio components
        markdown_updates = []
        audio_updates = []

        for i in range(MAX_COMPONENTS):
            if i < len(new_phrases) and i < visible_count:
                markdown_updates.append(gr.update(value=f"**{i+1}. {new_phrases[i]}**", visible=True))
                audio_updates.append(gr.update(visible=True))
            elif i < len(new_phrases):
                markdown_updates.append(gr.update(value=f"**{i+1}. {new_phrases[i]}**", visible=False))
                audio_updates.append(gr.update(visible=False))
            else:
                markdown_updates.append(gr.update(value=f"**{i+1}. **", visible=False))
                audio_updates.append(gr.update(visible=False))

        # Return: [phrases_state, visible_state] + markdown_updates + audio_updates
        return [new_phrases, visible_count] + markdown_updates + audio_updates

    # Connect language change to phrase reloading
    language_selector.change(
        change_language,
        inputs=[language_selector],
        outputs=[phrase_texts_state, visible_rows_state] + phrase_markdowns + rec_components
    )

    add_rows_btn.click(
        add_more_rows,
        inputs=[visible_rows_state, phrase_texts_state],
        outputs=[visible_rows_state] + phrase_markdowns + rec_components
    )

    # Recording dataset creation button
    record_dataset_btn = gr.Button("πŸŽ™οΈ Create Dataset from Recordings", variant="primary")

    def create_recording_dataset(*recordings_and_state):
        """Create dataset from visible recordings and phrases"""
        try:
            import soundfile as sf

            # Extract recordings and state
            recordings = recordings_and_state[:-1]  # All except the last item (phrases)
            phrases = recordings_and_state[-1]      # Last item is phrases

            dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user"
            wav_dir = dataset_dir / "wavs"
            wav_dir.mkdir(parents=True, exist_ok=True)

            rows = []
            successful_recordings = 0

            # Process each recording
            for i, rec in enumerate(recordings):
                if rec is not None and i < len(phrases):
                    try:
                        sr, data = rec
                        out_path = wav_dir / f"recording_{i:04d}.wav"
                        sf.write(str(out_path), data, sr)
                        rows.append({"audio_path": str(out_path), "text": phrases[i]})
                        successful_recordings += 1
                    except Exception as e:
                        print(f"Error processing recording {i}: {e}")

            if rows:
                jsonl_path = dataset_dir / "recorded_data.jsonl"
                _write_jsonl(rows, jsonl_path)
                return f"βœ… Dataset created successfully! {successful_recordings} recordings saved to {jsonl_path}"
            else:
                return "❌ No recordings found. Please record some audio first."

        except Exception as e:
            return f"❌ Error creating dataset: {str(e)}"

    # Status display for dataset creation
    dataset_status = gr.Textbox(label="Dataset Creation Status", interactive=False, visible=True)

    record_dataset_btn.click(
        create_recording_dataset,
        inputs=rec_components + [phrase_texts_state],
        outputs=[dataset_status]
    )

    # Advanced options accordion
    with gr.Accordion("Advanced options", open=False):
        base_model = gr.Textbox(value="mistralai/Voxtral-Mini-3B-2507", label="Base Voxtral model")
        use_lora = gr.Checkbox(value=True, label="Use LoRA (parameter-efficient)")
        with gr.Row():
            batch_size = gr.Number(value=2, precision=0, label="Batch size")
            grad_accum = gr.Number(value=4, precision=0, label="Grad accum")
        with gr.Row():
            learning_rate = gr.Number(value=5e-5, precision=6, label="Learning rate")
            epochs = gr.Number(value=3.0, precision=2, label="Epochs")
        with gr.Accordion("LoRA settings", open=False):
            lora_r = gr.Number(value=8, precision=0, label="LoRA r")
            lora_alpha = gr.Number(value=32, precision=0, label="LoRA alpha")
            lora_dropout = gr.Number(value=0.0, precision=3, label="LoRA dropout")
            freeze_audio_tower = gr.Checkbox(value=True, label="Freeze audio tower")
        with gr.Row():
            train_count = gr.Number(value=100, precision=0, label="Train samples")
            eval_count = gr.Number(value=50, precision=0, label="Eval samples")
        repo_short = gr.Textbox(value=f"voxtral-finetune-{datetime.now().strftime('%Y%m%d_%H%M%S')}", label="Model repo (short)")
        push_to_hub = gr.Checkbox(value=True, label="Push to HF Hub after training")
        deploy_demo = gr.Checkbox(value=True, label="Deploy demo Space after push")

        gr.Markdown("### Upload audio + transcripts (optional)")
        upload_audio = gr.File(file_count="multiple", type="filepath", label="Upload WAV/FLAC files (optional)")
        transcripts_box = gr.Textbox(lines=6, label="Transcripts (one per line, aligned with files)")
        save_upload_btn = gr.Button("Save uploaded dataset")

        def _collect_upload(files, txt):
            lines = [s.strip() for s in (txt or "").splitlines() if s.strip()]
            return _save_uploaded_dataset(files or [], lines)

        save_upload_btn.click(_collect_upload, [upload_audio, transcripts_box], [jsonl_out])

    # Save recordings button
    save_rec_btn = gr.Button("Save recordings as dataset")

    def _collect_preloaded_recs(*recs_and_texts):
        import soundfile as sf
        dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user"
        wav_dir = dataset_dir / "wavs"
        wav_dir.mkdir(parents=True, exist_ok=True)
        rows: list[dict] = []
        if not recs_and_texts:
            jsonl_path = dataset_dir / "data.jsonl"
            _write_jsonl(rows, jsonl_path)
            return str(jsonl_path)
        texts = recs_and_texts[-1]
        recs = recs_and_texts[:-1]
        for i, rec in enumerate(recs):
            if rec is None:
                continue
            sr, data = rec
            out_path = wav_dir / f"rec_{i:04d}.wav"
            sf.write(str(out_path), data, sr)
            # Use the full phrase list (ALL_PHRASES) instead of just PHRASES
            label_text = (texts[i] if isinstance(texts, list) and i < len(texts) else (ALL_PHRASES[i] if i < len(ALL_PHRASES) else ""))
            rows.append({"audio_path": str(out_path), "text": label_text})
        jsonl_path = dataset_dir / "data.jsonl"
        _write_jsonl(rows, jsonl_path)
        return str(jsonl_path)

    save_rec_btn.click(_collect_preloaded_recs, rec_components + [phrase_texts_state], [jsonl_out])

    # Quick sample from multilingual datasets (Common Voice, etc.)
    with gr.Row():
        vp_lang = gr.Dropdown(choices=["en", "de", "fr", "es", "it", "pl", "pt", "nl", "ru", "ar", "zh", "ja", "ko", "da", "sv", "fi", "et", "cs", "hr", "bg", "uk", "ro", "hu", "el"], value="en", label="Sample Language")
        vp_samples = gr.Number(value=20, precision=0, label="Num samples")
        vp_split = gr.Dropdown(choices=["train", "validation", "test"], value="train", label="Split")
        vp_btn = gr.Button("Use Multilingual Dataset Sample")

        def _collect_multilingual_sample(lang_code: str, num_samples: int, split: str):
            """Collect sample audio and text from NVIDIA Granary dataset"""
            from datasets import load_dataset, Audio
            import random

            # Map language code to Granary format
            granary_lang_map = {
                "en": "en", "de": "de", "fr": "fr", "es": "es", "it": "it",
                "pl": "pl", "pt": "pt", "nl": "nl", "ru": "ru", "ar": "ar",
                "zh": "zh", "ja": "ja", "ko": "ko", "da": "da", "sv": "sv",
                "no": "no", "fi": "fi", "et": "et", "lv": "lv", "lt": "lt",
                "sl": "sl", "sk": "sk", "cs": "cs", "hr": "hr", "bg": "bg",
                "uk": "uk", "ro": "ro", "hu": "hu", "el": "el", "mt": "mt"
            }

            granary_lang = granary_lang_map.get(lang_code, "en")

            try:
                print(f"Collecting {num_samples} samples from NVIDIA Granary dataset for language: {lang_code}")

                # Load Granary dataset with ASR split
                ds = load_dataset("nvidia/Granary", granary_lang, split="asr", streaming=True)

                dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user"
                rows = []
                texts = []
                count = 0

                # Sample from the dataset
                for example in ds:
                    if count >= num_samples:
                        break

                    text = example.get("text", "").strip()
                    audio_path = example.get("audio_filepath", "")

                    # Filter for quality samples
                    if (text and
                        len(text) > 10 and
                        len(text) < 200 and
                        audio_path):  # Must have audio file

                        rows.append({
                            "audio_path": audio_path,
                            "text": text
                        })
                        texts.append(text)
                        count += 1

                if rows:
                    jsonl_path = dataset_dir / "data.jsonl"
                    _write_jsonl(rows, jsonl_path)

                    print(f"Successfully collected {len(rows)} samples from Granary dataset")

                    # Build markdown and audio content updates for on-screen prompts
                    markdown_updates = []
                    audio_updates = []
                    for i in range(MAX_COMPONENTS):
                        t = texts[i] if i < len(texts) else ""
                        if i < len(texts):
                            markdown_updates.append(gr.update(value=f"**{i+1}. {t}**", visible=True))
                            audio_updates.append(gr.update(visible=True))
                        else:
                            markdown_updates.append(gr.update(visible=False))
                            audio_updates.append(gr.update(visible=False))

                    combined_updates = markdown_updates + audio_updates

                    return (str(jsonl_path), texts, *combined_updates)

            except Exception as e:
                print(f"Granary sample collection failed for {lang_code}: {e}")

            # Fallback: generate text-only samples if Granary fails
            print(f"Using fallback: generating text-only samples for {lang_code}")
            phrases = load_multilingual_phrases(lang_code, max_phrases=num_samples)
            texts = phrases[:num_samples]

            dataset_dir = PROJECT_ROOT / "datasets" / "voxtral_user"
            rows = [{"audio_path": "", "text": text} for text in texts]
            jsonl_path = dataset_dir / "data.jsonl"
            _write_jsonl(rows, jsonl_path)

            # Build markdown and audio content updates for on-screen prompts
            markdown_updates = []
            audio_updates = []
            for i in range(MAX_COMPONENTS):
                t = texts[i] if i < len(texts) else ""
                if i < len(texts):
                    markdown_updates.append(gr.update(value=f"**{i+1}. {t}**", visible=True))
                    audio_updates.append(gr.update(visible=True))
                else:
                    markdown_updates.append(gr.update(visible=False))
                    audio_updates.append(gr.update(visible=False))

            combined_updates = markdown_updates + audio_updates

            return (str(jsonl_path), texts, *combined_updates)

        vp_btn.click(
            _collect_multilingual_sample,
            [vp_lang, vp_samples, vp_split],
            [jsonl_out, phrase_texts_state] + phrase_markdowns,
        )

    start_btn = gr.Button("Start Fine-tuning")
    logs_box = gr.Textbox(label="Logs", lines=20)

    start_btn.click(
        start_voxtral_training,
        inputs=[
            use_lora, base_model, repo_short, jsonl_out, train_count, eval_count,
            batch_size, grad_accum, learning_rate, epochs,
            lora_r, lora_alpha, lora_dropout, freeze_audio_tower,
            push_to_hub, deploy_demo,
        ],
        outputs=[logs_box],
    )


if __name__ == "__main__":
    server_port = int(os.environ.get("INTERFACE_PORT", "7860"))
    server_name = os.environ.get("INTERFACE_HOST", "0.0.0.0")
    demo.queue().launch(server_name=server_name, server_port=server_port, mcp_server=True, ssr_mode=False)