#!/bin/bash # Cloud Model Recovery and Deployment Script # Run this on your cloud instance to recover and deploy your trained model set -e # Exit on any error echo "🚀 Starting cloud model recovery and deployment..." # Configuration MODEL_PATH="/output-checkpoint" REPO_NAME="your-username/smollm3-finetuned" # Change this to your HF username and desired repo name HF_TOKEN="${HF_TOKEN}" # Set this environment variable PRIVATE=false # Set to true if you want a private repository # Colors for output RED='\033[0;31m' GREEN='\033[0;32m' YELLOW='\033[1;33m' BLUE='\033[0;34m' NC='\033[0m' # No Color # Function to print colored output print_status() { echo -e "${BLUE}[INFO]${NC} $1" } print_success() { echo -e "${GREEN}[SUCCESS]${NC} $1" } print_warning() { echo -e "${YELLOW}[WARNING]${NC} $1" } print_error() { echo -e "${RED}[ERROR]${NC} $1" } # Check if we're in the right directory if [ ! -d "$MODEL_PATH" ]; then print_error "Model path not found: $MODEL_PATH" exit 1 fi print_status "Found model at: $MODEL_PATH" # Check for required files print_status "Validating model files..." if [ ! -f "$MODEL_PATH/config.json" ]; then print_error "config.json not found" exit 1 fi if [ ! -f "$MODEL_PATH/model.safetensors.index.json" ]; then print_error "model.safetensors.index.json not found" exit 1 fi if [ ! -f "$MODEL_PATH/tokenizer.json" ]; then print_error "tokenizer.json not found" exit 1 fi print_success "Model files validated" # Check HF token if [ -z "$HF_TOKEN" ]; then print_error "HF_TOKEN environment variable not set" print_status "Please set your Hugging Face token:" print_status "export HF_TOKEN=your_token_here" exit 1 fi print_success "HF Token found" # Install required packages if not already installed print_status "Checking dependencies..." python3 -c "import torchao" 2>/dev/null || { print_status "Installing torchao..." pip install torchao } python3 -c "import huggingface_hub" 2>/dev/null || { print_status "Installing huggingface_hub..." pip install huggingface_hub } print_success "Dependencies checked" # Run the recovery script print_status "Running model recovery and deployment pipeline..." python3 recover_model.py \ "$MODEL_PATH" \ "$REPO_NAME" \ --hf-token "$HF_TOKEN" \ --private "$PRIVATE" \ --quant-types int8_weight_only int4_weight_only \ --author-name "Your Name" \ --model-description "A fine-tuned SmolLM3 model for improved text generation and conversation capabilities" if [ $? -eq 0 ]; then print_success "Model recovery and deployment completed successfully!" print_success "View your model at: https://huggingface.co/$REPO_NAME" print_success "Quantized models available at:" print_success " - https://huggingface.co/$REPO_NAME/int8 (GPU optimized)" print_success " - https://huggingface.co/$REPO_NAME/int4 (CPU optimized)" else print_error "Model recovery and deployment failed!" exit 1 fi print_success "🎉 All done! Your model has been successfully recovered and deployed to Hugging Face Hub."