#!/usr/bin/env python3 """ Dataset utilities for Trackio experiment data management Provides functions for safe dataset operations with data preservation """ import json import logging from datetime import datetime from typing import Dict, Any, List, Optional, Union from datasets import Dataset, load_dataset logger = logging.getLogger(__name__) class TrackioDatasetManager: """ Manager class for Trackio experiment datasets with data preservation. This class ensures that existing experiment data is always preserved when adding new experiments or updating existing ones. """ def __init__(self, dataset_repo: str, hf_token: str): """ Initialize the dataset manager. Args: dataset_repo (str): HF dataset repository ID (e.g., "username/dataset-name") hf_token (str): Hugging Face token for authentication """ self.dataset_repo = dataset_repo self.hf_token = hf_token self._validate_repo_format() def _validate_repo_format(self): """Validate dataset repository format""" if not self.dataset_repo or '/' not in self.dataset_repo: raise ValueError(f"Invalid dataset repository format: {self.dataset_repo}") def check_dataset_exists(self) -> bool: """ Check if the dataset repository exists and is accessible. Returns: bool: True if dataset exists and is accessible, False otherwise """ try: load_dataset(self.dataset_repo, token=self.hf_token) logger.info(f"✅ Dataset {self.dataset_repo} exists and is accessible") return True except Exception as e: logger.info(f"📊 Dataset {self.dataset_repo} doesn't exist or isn't accessible: {e}") return False def load_existing_experiments(self) -> List[Dict[str, Any]]: """ Load all existing experiments from the dataset. Returns: List[Dict[str, Any]]: List of existing experiment dictionaries """ try: if not self.check_dataset_exists(): logger.info("📊 No existing dataset found, returning empty list") return [] dataset = load_dataset(self.dataset_repo, token=self.hf_token) if 'train' not in dataset: logger.info("📊 No 'train' split found in dataset") return [] experiments = list(dataset['train']) logger.info(f"📊 Loaded {len(experiments)} existing experiments") # Validate experiment structure valid_experiments = [] for exp in experiments: if self._validate_experiment_structure(exp): valid_experiments.append(exp) else: logger.warning(f"⚠️ Skipping invalid experiment: {exp.get('experiment_id', 'unknown')}") logger.info(f"📊 {len(valid_experiments)} valid experiments loaded") return valid_experiments except Exception as e: logger.error(f"❌ Failed to load existing experiments: {e}") return [] def _validate_experiment_structure(self, experiment: Dict[str, Any]) -> bool: """ Validate and SANITIZE an experiment structure to prevent destructive failures. - Requires 'experiment_id'; otherwise skip the row. - Fills defaults for missing non-JSON fields. - Normalizes JSON fields to valid JSON strings. """ if not experiment.get('experiment_id'): logger.warning("⚠️ Missing required field 'experiment_id' in experiment; skipping row") return False defaults = { 'name': '', 'description': '', 'created_at': datetime.now().isoformat(), 'status': 'running', } for key, default_value in defaults.items(): if experiment.get(key) in (None, ''): experiment[key] = default_value def _ensure_json_string(field_name: str, default_value: Any): raw_value = experiment.get(field_name) try: if isinstance(raw_value, str): if raw_value.strip() == '': experiment[field_name] = json.dumps(default_value, default=str) else: json.loads(raw_value) else: experiment[field_name] = json.dumps( raw_value if raw_value is not None else default_value, default=str ) except Exception: experiment[field_name] = json.dumps(default_value, default=str) for json_field, default in (('metrics', []), ('parameters', {}), ('artifacts', []), ('logs', [])): _ensure_json_string(json_field, default) return True def save_experiments(self, experiments: List[Dict[str, Any]], commit_message: Optional[str] = None) -> bool: """ Save experiments using a non-destructive UNION-MERGE by experiment_id. - Loads existing experiments and merges JSON fields non-destructively - Incoming scalar fields override existing scalars - JSON fields are merged with de-duplication """ try: if not experiments: logger.warning("⚠️ No experiments to save") return False # Helpers def _parse_json_field(value, default): try: if value is None: return default if isinstance(value, str): return json.loads(value) if value else default return value except Exception: return default def _metrics_key(entry: Dict[str, Any]): if isinstance(entry, dict): return (entry.get('step'), entry.get('timestamp')) return (None, json.dumps(entry, sort_keys=True)) # Load existing experiments for union merge existing = {} try: for row in self.load_existing_experiments(): exp_id = row.get('experiment_id') if exp_id: existing[exp_id] = row except Exception: existing = {} merged_map: Dict[str, Dict[str, Any]] = {exp_id: row for exp_id, row in existing.items()} # Validate and merge incoming experiments for exp in experiments: if not self._validate_experiment_structure(exp): logger.error(f"❌ Invalid experiment structure: {exp.get('experiment_id', 'unknown')}") return False exp_id = exp['experiment_id'] incoming = exp if exp_id not in merged_map: incoming['last_updated'] = incoming.get('last_updated') or datetime.now().isoformat() merged_map[exp_id] = incoming continue # Merge with existing base = merged_map[exp_id] base_metrics = _parse_json_field(base.get('metrics'), []) base_params = _parse_json_field(base.get('parameters'), {}) base_artifacts = _parse_json_field(base.get('artifacts'), []) base_logs = _parse_json_field(base.get('logs'), []) inc_metrics = _parse_json_field(incoming.get('metrics'), []) inc_params = _parse_json_field(incoming.get('parameters'), {}) inc_artifacts = _parse_json_field(incoming.get('artifacts'), []) inc_logs = _parse_json_field(incoming.get('logs'), []) # Merge metrics with de-dup merged_metrics = [] seen = set() for entry in list(base_metrics) + list(inc_metrics): try: key = _metrics_key(entry) except Exception: key = (None, None) if key not in seen: seen.add(key) merged_metrics.append(entry) # Merge params (incoming overrides) merged_params = {} if isinstance(base_params, dict): merged_params.update(base_params) if isinstance(inc_params, dict): merged_params.update(inc_params) # Merge artifacts/logs with de-dup while preserving order def _dedup_list(lst): out = [] seen_local = set() for item in lst: key = json.dumps(item, sort_keys=True, default=str) if not isinstance(item, str) else item if key not in seen_local: seen_local.add(key) out.append(item) return out merged_artifacts = _dedup_list(list(base_artifacts) + list(inc_artifacts)) merged_logs = _dedup_list(list(base_logs) + list(inc_logs)) # Rebuild merged record preferring incoming scalars merged_rec = dict(base) merged_rec.update({k: v for k, v in incoming.items() if k not in ('metrics', 'parameters', 'artifacts', 'logs')}) merged_rec['metrics'] = json.dumps(merged_metrics, default=str) merged_rec['parameters'] = json.dumps(merged_params, default=str) merged_rec['artifacts'] = json.dumps(merged_artifacts, default=str) merged_rec['logs'] = json.dumps(merged_logs, default=str) merged_rec['last_updated'] = datetime.now().isoformat() merged_map[exp_id] = merged_rec # Normalize final list normalized = [] for rec in merged_map.values(): for f, default in (('metrics', []), ('parameters', {}), ('artifacts', []), ('logs', [])): val = rec.get(f) if not isinstance(val, str): rec[f] = json.dumps(val if val is not None else default, default=str) if 'last_updated' not in rec: rec['last_updated'] = datetime.now().isoformat() normalized.append(rec) dataset = Dataset.from_list(normalized) if not commit_message: commit_message = f"Union-merge update with {len(normalized)} experiments ({datetime.now().isoformat()})" dataset.push_to_hub( self.dataset_repo, token=self.hf_token, private=True, commit_message=commit_message ) logger.info(f"✅ Successfully saved {len(normalized)} experiments (union-merged) to {self.dataset_repo}") return True except Exception as e: logger.error(f"❌ Failed to save experiments to dataset: {e}") return False def upsert_experiment(self, experiment: Dict[str, Any]) -> bool: """ Insert a new experiment or update an existing one, preserving all other data. Args: experiment (Dict[str, Any]): Experiment dictionary to upsert Returns: bool: True if operation was successful, False otherwise """ try: # Validate the experiment structure if not self._validate_experiment_structure(experiment): logger.error(f"❌ Invalid experiment structure for {experiment.get('experiment_id', 'unknown')}") return False # Load existing experiments existing_experiments = self.load_existing_experiments() # Find if experiment already exists experiment_id = experiment['experiment_id'] experiment_found = False updated_experiments = [] for existing_exp in existing_experiments: if existing_exp.get('experiment_id') == experiment_id: # Update existing experiment logger.info(f"🔄 Updating existing experiment: {experiment_id}") experiment['last_updated'] = datetime.now().isoformat() updated_experiments.append(experiment) experiment_found = True else: # Preserve existing experiment updated_experiments.append(existing_exp) # If experiment doesn't exist, add it if not experiment_found: logger.info(f"➕ Adding new experiment: {experiment_id}") experiment['last_updated'] = datetime.now().isoformat() updated_experiments.append(experiment) # Save all experiments commit_message = f"{'Update' if experiment_found else 'Add'} experiment {experiment_id} (preserving {len(existing_experiments)} existing experiments)" return self.save_experiments(updated_experiments, commit_message) except Exception as e: logger.error(f"❌ Failed to upsert experiment: {e}") return False def get_experiment_by_id(self, experiment_id: str) -> Optional[Dict[str, Any]]: """ Retrieve a specific experiment by its ID. Args: experiment_id (str): The experiment ID to search for Returns: Optional[Dict[str, Any]]: The experiment dictionary if found, None otherwise """ try: experiments = self.load_existing_experiments() for exp in experiments: if exp.get('experiment_id') == experiment_id: logger.info(f"✅ Found experiment: {experiment_id}") return exp logger.info(f"📊 Experiment not found: {experiment_id}") return None except Exception as e: logger.error(f"❌ Failed to get experiment {experiment_id}: {e}") return None def list_experiments(self, status_filter: Optional[str] = None) -> List[Dict[str, Any]]: """ List all experiments, optionally filtered by status. Args: status_filter (Optional[str]): Filter by experiment status (running, completed, failed, paused) Returns: List[Dict[str, Any]]: List of experiments matching the filter """ try: experiments = self.load_existing_experiments() if status_filter: filtered_experiments = [exp for exp in experiments if exp.get('status') == status_filter] logger.info(f"📊 Found {len(filtered_experiments)} experiments with status '{status_filter}'") return filtered_experiments logger.info(f"📊 Found {len(experiments)} total experiments") return experiments except Exception as e: logger.error(f"❌ Failed to list experiments: {e}") return [] def backup_dataset(self, backup_suffix: Optional[str] = None) -> str: """ Create a backup of the current dataset. Args: backup_suffix (Optional[str]): Optional suffix for backup repo name Returns: str: Backup repository name if successful, empty string otherwise """ try: if not backup_suffix: backup_suffix = datetime.now().strftime('%Y%m%d_%H%M%S') backup_repo = f"{self.dataset_repo}-backup-{backup_suffix}" # Load current experiments experiments = self.load_existing_experiments() if not experiments: logger.warning("⚠️ No experiments to backup") return "" # Create backup dataset manager backup_manager = TrackioDatasetManager(backup_repo, self.hf_token) # Save to backup success = backup_manager.save_experiments( experiments, f"Backup of {self.dataset_repo} created on {datetime.now().isoformat()}" ) if success: logger.info(f"✅ Backup created: {backup_repo}") return backup_repo else: logger.error("❌ Failed to create backup") return "" except Exception as e: logger.error(f"❌ Failed to create backup: {e}") return "" def create_dataset_manager(dataset_repo: str, hf_token: str) -> TrackioDatasetManager: """ Factory function to create a TrackioDatasetManager instance. Args: dataset_repo (str): HF dataset repository ID hf_token (str): Hugging Face token Returns: TrackioDatasetManager: Configured dataset manager instance """ return TrackioDatasetManager(dataset_repo, hf_token)