""" Trackio Deployment on Hugging Face Spaces A Gradio interface for experiment tracking and monitoring """ import gradio as gr import os import json import logging from datetime import datetime from typing import Dict, Any, Optional import requests import plotly.graph_objects as go import plotly.express as px import pandas as pd import numpy as np # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class TrackioSpace: """Trackio deployment for Hugging Face Spaces""" def __init__(self): self.experiments = {} self.current_experiment = None self.data_file = "trackio_experiments.json" self._load_experiments() def _load_experiments(self): """Load experiments from file""" try: if os.path.exists(self.data_file): with open(self.data_file, 'r') as f: data = json.load(f) self.experiments = data.get('experiments', {}) self.current_experiment = data.get('current_experiment') logger.info(f"Loaded {len(self.experiments)} experiments from {self.data_file}") else: logger.info("No existing experiment data found, starting fresh") except Exception as e: logger.error(f"Failed to load experiments: {e}") self.experiments = {} def _save_experiments(self): """Save experiments to file""" try: data = { 'experiments': self.experiments, 'current_experiment': self.current_experiment, 'last_updated': datetime.now().isoformat() } with open(self.data_file, 'w') as f: json.dump(data, f, indent=2, default=str) logger.debug(f"Saved {len(self.experiments)} experiments to {self.data_file}") except Exception as e: logger.error(f"Failed to save experiments: {e}") def create_experiment(self, name: str, description: str = "") -> Dict[str, Any]: """Create a new experiment""" experiment_id = f"exp_{datetime.now().strftime('%Y%m%d_%H%M%S')}" experiment = { 'id': experiment_id, 'name': name, 'description': description, 'created_at': datetime.now().isoformat(), 'status': 'running', 'metrics': [], 'parameters': {}, 'artifacts': [], 'logs': [] } self.experiments[experiment_id] = experiment self.current_experiment = experiment_id self._save_experiments() logger.info(f"Created experiment: {experiment_id} - {name}") return experiment def log_metrics(self, experiment_id: str, metrics: Dict[str, Any], step: Optional[int] = None): """Log metrics for an experiment""" if experiment_id not in self.experiments: raise ValueError(f"Experiment {experiment_id} not found") metric_entry = { 'timestamp': datetime.now().isoformat(), 'step': step, 'metrics': metrics } self.experiments[experiment_id]['metrics'].append(metric_entry) self._save_experiments() logger.info(f"Logged metrics for experiment {experiment_id}: {metrics}") def log_parameters(self, experiment_id: str, parameters: Dict[str, Any]): """Log parameters for an experiment""" if experiment_id not in self.experiments: raise ValueError(f"Experiment {experiment_id} not found") self.experiments[experiment_id]['parameters'].update(parameters) self._save_experiments() logger.info(f"Logged parameters for experiment {experiment_id}: {parameters}") def log_artifact(self, experiment_id: str, artifact_name: str, artifact_data: str): """Log an artifact for an experiment""" if experiment_id not in self.experiments: raise ValueError(f"Experiment {experiment_id} not found") artifact_entry = { 'name': artifact_name, 'timestamp': datetime.now().isoformat(), 'data': artifact_data } self.experiments[experiment_id]['artifacts'].append(artifact_entry) self._save_experiments() logger.info(f"Logged artifact for experiment {experiment_id}: {artifact_name}") def get_experiment(self, experiment_id: str) -> Optional[Dict[str, Any]]: """Get experiment details""" return self.experiments.get(experiment_id) def list_experiments(self) -> Dict[str, Any]: """List all experiments""" return { 'experiments': list(self.experiments.keys()), 'current_experiment': self.current_experiment, 'total_experiments': len(self.experiments) } def update_experiment_status(self, experiment_id: str, status: str): """Update experiment status""" if experiment_id in self.experiments: self.experiments[experiment_id]['status'] = status self._save_experiments() logger.info(f"Updated experiment {experiment_id} status to {status}") def get_metrics_dataframe(self, experiment_id: str) -> pd.DataFrame: """Get metrics as a pandas DataFrame for plotting""" if experiment_id not in self.experiments: return pd.DataFrame() experiment = self.experiments[experiment_id] if not experiment['metrics']: return pd.DataFrame() # Convert metrics to DataFrame data = [] for metric_entry in experiment['metrics']: step = metric_entry.get('step', 0) timestamp = metric_entry.get('timestamp', '') metrics = metric_entry.get('metrics', {}) row = {'step': step, 'timestamp': timestamp} row.update(metrics) data.append(row) return pd.DataFrame(data) # Initialize Trackio space trackio_space = TrackioSpace() # Initialize API client for remote data api_client = None try: from trackio_api_client import TrackioAPIClient api_client = TrackioAPIClient("https://tonic-test-trackio-test.hf.space") logger.info("✅ API client initialized for remote data access") except ImportError: logger.warning("⚠️ API client not available, using local data only") def get_remote_experiment_data(experiment_id: str) -> Dict[str, Any]: """Get experiment data from remote API""" if api_client is None: return None try: # Get experiment details from API details_result = api_client.get_experiment_details(experiment_id) if "success" in details_result: return {"remote": True, "data": details_result["data"]} else: logger.warning(f"Failed to get remote data for {experiment_id}: {details_result}") return None except Exception as e: logger.error(f"Error getting remote data: {e}") return None def parse_remote_metrics_data(experiment_details: str) -> pd.DataFrame: """Parse metrics data from remote experiment details""" try: # Look for metrics in the experiment details lines = experiment_details.split('\n') metrics_data = [] for line in lines: if 'Step:' in line and 'Metrics:' in line: # Extract step and metrics from the line try: # Parse step number step_part = line.split('Step:')[1].split('Metrics:')[0].strip() step = int(step_part) # Parse metrics JSON metrics_part = line.split('Metrics:')[1].strip() metrics = json.loads(metrics_part) # Add timestamp row = {'step': step, 'timestamp': datetime.now().isoformat()} row.update(metrics) metrics_data.append(row) except (ValueError, json.JSONDecodeError) as e: logger.warning(f"Failed to parse metrics line: {line} - {e}") continue if metrics_data: return pd.DataFrame(metrics_data) else: return pd.DataFrame() except Exception as e: logger.error(f"Error parsing remote metrics: {e}") return pd.DataFrame() def get_metrics_dataframe(experiment_id: str) -> pd.DataFrame: """Get metrics as a pandas DataFrame for plotting - tries remote first, then local""" # Try to get remote data first remote_data = get_remote_experiment_data(experiment_id) if remote_data: logger.info(f"Using remote data for {experiment_id}") # Parse the remote experiment details to extract metrics df = parse_remote_metrics_data(remote_data["data"]) if not df.empty: logger.info(f"Found {len(df)} metrics entries from remote data") return df else: logger.warning(f"No metrics found in remote data for {experiment_id}") # Fall back to local data logger.info(f"Using local data for {experiment_id}") return trackio_space.get_metrics_dataframe(experiment_id) def create_experiment_interface(name: str, description: str) -> str: """Create a new experiment""" try: experiment = trackio_space.create_experiment(name, description) return f"✅ Experiment created successfully!\nID: {experiment['id']}\nName: {experiment['name']}\nStatus: {experiment['status']}" except Exception as e: return f"❌ Error creating experiment: {str(e)}" def log_metrics_interface(experiment_id: str, metrics_json: str, step: str) -> str: """Log metrics for an experiment""" try: metrics = json.loads(metrics_json) step_int = int(step) if step else None trackio_space.log_metrics(experiment_id, metrics, step_int) return f"✅ Metrics logged successfully for experiment {experiment_id}\nStep: {step_int}\nMetrics: {json.dumps(metrics, indent=2)}" except Exception as e: return f"❌ Error logging metrics: {str(e)}" def log_parameters_interface(experiment_id: str, parameters_json: str) -> str: """Log parameters for an experiment""" try: parameters = json.loads(parameters_json) trackio_space.log_parameters(experiment_id, parameters) return f"✅ Parameters logged successfully for experiment {experiment_id}\nParameters: {json.dumps(parameters, indent=2)}" except Exception as e: return f"❌ Error logging parameters: {str(e)}" def get_experiment_details(experiment_id: str) -> str: """Get experiment details""" try: experiment = trackio_space.get_experiment(experiment_id) if experiment: # Format the output nicely details = f""" 📊 EXPERIMENT DETAILS ==================== ID: {experiment['id']} Name: {experiment['name']} Description: {experiment['description']} Status: {experiment['status']} Created: {experiment['created_at']} 📈 METRICS COUNT: {len(experiment['metrics'])} 📋 PARAMETERS COUNT: {len(experiment['parameters'])} 📦 ARTIFACTS COUNT: {len(experiment['artifacts'])} 🔧 PARAMETERS: {json.dumps(experiment['parameters'], indent=2)} 📊 LATEST METRICS: """ if experiment['metrics']: latest_metrics = experiment['metrics'][-1] details += f"Step: {latest_metrics.get('step', 'N/A')}\n" details += f"Timestamp: {latest_metrics.get('timestamp', 'N/A')}\n" details += f"Metrics: {json.dumps(latest_metrics.get('metrics', {}), indent=2)}" else: details += "No metrics logged yet." return details else: return f"❌ Experiment {experiment_id} not found" except Exception as e: return f"❌ Error getting experiment details: {str(e)}" def list_experiments_interface() -> str: """List all experiments with details""" try: experiments_info = trackio_space.list_experiments() experiments = trackio_space.experiments if not experiments: return "📭 No experiments found. Create one first!" result = f"📋 EXPERIMENTS OVERVIEW\n{'='*50}\n" result += f"Total Experiments: {len(experiments)}\n" result += f"Current Experiment: {experiments_info['current_experiment']}\n\n" for exp_id, exp_data in experiments.items(): status_emoji = { 'running': '🟢', 'completed': '✅', 'failed': '❌', 'paused': '⏸️' }.get(exp_data['status'], '❓') result += f"{status_emoji} {exp_id}\n" result += f" Name: {exp_data['name']}\n" result += f" Status: {exp_data['status']}\n" result += f" Created: {exp_data['created_at']}\n" result += f" Metrics: {len(exp_data['metrics'])} entries\n" result += f" Parameters: {len(exp_data['parameters'])} entries\n" result += f" Artifacts: {len(exp_data['artifacts'])} entries\n\n" return result except Exception as e: return f"❌ Error listing experiments: {str(e)}" def update_experiment_status_interface(experiment_id: str, status: str) -> str: """Update experiment status""" try: trackio_space.update_experiment_status(experiment_id, status) return f"✅ Experiment {experiment_id} status updated to {status}" except Exception as e: return f"❌ Error updating experiment status: {str(e)}" def create_metrics_plot(experiment_id: str, metric_name: str = "loss") -> go.Figure: """Create a plot for a specific metric""" try: df = get_metrics_dataframe(experiment_id) if df.empty: # Return empty plot fig = go.Figure() fig.add_annotation( text="No metrics data available", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False ) return fig if metric_name not in df.columns: # Show available metrics available_metrics = [col for col in df.columns if col not in ['step', 'timestamp']] fig = go.Figure() fig.add_annotation( text=f"Available metrics: {', '.join(available_metrics)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False ) return fig fig = px.line(df, x='step', y=metric_name, title=f'{metric_name} over time') fig.update_layout( xaxis_title="Training Step", yaxis_title=metric_name.title(), hovermode='x unified' ) return fig except Exception as e: fig = go.Figure() fig.add_annotation( text=f"Error creating plot: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False ) return fig def create_experiment_comparison(experiment_ids: str) -> go.Figure: """Compare multiple experiments""" try: exp_ids = [exp_id.strip() for exp_id in experiment_ids.split(',')] fig = go.Figure() for exp_id in exp_ids: df = get_metrics_dataframe(exp_id) if not df.empty and 'loss' in df.columns: fig.add_trace(go.Scatter( x=df['step'], y=df['loss'], mode='lines+markers', name=f"{exp_id} - Loss", line=dict(width=2) )) fig.update_layout( title="Experiment Comparison - Loss", xaxis_title="Training Step", yaxis_title="Loss", hovermode='x unified' ) return fig except Exception as e: fig = go.Figure() fig.add_annotation( text=f"Error creating comparison: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False ) return fig def simulate_training_data(experiment_id: str): """Simulate training data for demonstration""" try: # Simulate some realistic training metrics for step in range(0, 1000, 50): # Simulate loss decreasing over time loss = 2.0 * np.exp(-step / 500) + 0.1 * np.random.random() accuracy = 0.3 + 0.6 * (1 - np.exp(-step / 300)) + 0.05 * np.random.random() lr = 3.5e-6 * (0.9 ** (step // 200)) metrics = { "loss": round(loss, 4), "accuracy": round(accuracy, 4), "learning_rate": round(lr, 8), "gpu_memory": round(20 + 5 * np.random.random(), 2), "training_time": round(0.5 + 0.2 * np.random.random(), 3) } trackio_space.log_metrics(experiment_id, metrics, step) return f"✅ Simulated training data for experiment {experiment_id}\nAdded 20 metric entries (steps 0-950)" except Exception as e: return f"❌ Error simulating data: {str(e)}" def create_demo_experiment(): """Create a demo experiment with training data""" try: # Create demo experiment experiment = trackio_space.create_experiment( "demo_smollm3_training", "Demo experiment with simulated training data" ) experiment_id = experiment['id'] # Add some demo parameters parameters = { "model_name": "HuggingFaceTB/SmolLM3-3B", "batch_size": 8, "learning_rate": 3.5e-6, "max_iters": 18000, "mixed_precision": "bf16", "dataset": "legmlai/openhermes-fr" } trackio_space.log_parameters(experiment_id, parameters) # Add demo training data simulate_training_data(experiment_id) return f"✅ Demo experiment created: {experiment_id}\nYou can now test the visualization with this experiment!" except Exception as e: return f"❌ Error creating demo experiment: {str(e)}" # Create Gradio interface with gr.Blocks(title="Trackio - Experiment Tracking", theme=gr.themes.Soft()) as demo: gr.Markdown("# 🚀 Trackio Experiment Tracking & Monitoring") gr.Markdown("Monitor and track your ML experiments with real-time visualization!") with gr.Tabs(): # Create Experiment Tab with gr.Tab("Create Experiment"): gr.Markdown("### Create a New Experiment") with gr.Row(): with gr.Column(): experiment_name = gr.Textbox( label="Experiment Name", placeholder="my_smollm3_finetune", value="smollm3_finetune" ) experiment_description = gr.Textbox( label="Description", placeholder="Fine-tuning SmolLM3 model on custom dataset", value="SmolLM3 fine-tuning experiment" ) create_btn = gr.Button("Create Experiment", variant="primary") with gr.Column(): create_output = gr.Textbox( label="Result", lines=5, interactive=False ) create_btn.click( create_experiment_interface, inputs=[experiment_name, experiment_description], outputs=create_output ) # Log Metrics Tab with gr.Tab("Log Metrics"): gr.Markdown("### Log Training Metrics") with gr.Row(): with gr.Column(): metrics_exp_id = gr.Textbox( label="Experiment ID", placeholder="exp_20231201_143022" ) metrics_json = gr.Textbox( label="Metrics (JSON)", placeholder='{"loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5}', value='{"loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5, "gpu_memory": 22.5}' ) metrics_step = gr.Textbox( label="Step (optional)", placeholder="100" ) log_metrics_btn = gr.Button("Log Metrics", variant="primary") with gr.Column(): metrics_output = gr.Textbox( label="Result", lines=5, interactive=False ) log_metrics_btn.click( log_metrics_interface, inputs=[metrics_exp_id, metrics_json, metrics_step], outputs=metrics_output ) # Log Parameters Tab with gr.Tab("Log Parameters"): gr.Markdown("### Log Experiment Parameters") with gr.Row(): with gr.Column(): params_exp_id = gr.Textbox( label="Experiment ID", placeholder="exp_20231201_143022" ) parameters_json = gr.Textbox( label="Parameters (JSON)", placeholder='{"learning_rate": 2e-5, "batch_size": 4}', value='{"learning_rate": 3.5e-6, "batch_size": 8, "model_name": "HuggingFaceTB/SmolLM3-3B", "max_iters": 18000, "mixed_precision": "bf16"}' ) log_params_btn = gr.Button("Log Parameters", variant="primary") with gr.Column(): params_output = gr.Textbox( label="Result", lines=5, interactive=False ) log_params_btn.click( log_parameters_interface, inputs=[params_exp_id, parameters_json], outputs=params_output ) # View Experiments Tab with gr.Tab("View Experiments"): gr.Markdown("### View Experiment Details") with gr.Row(): with gr.Column(): view_exp_id = gr.Textbox( label="Experiment ID", placeholder="exp_20231201_143022" ) view_btn = gr.Button("View Experiment", variant="primary") list_btn = gr.Button("List All Experiments", variant="secondary") with gr.Column(): view_output = gr.Textbox( label="Experiment Details", lines=20, interactive=False ) view_btn.click( get_experiment_details, inputs=[view_exp_id], outputs=view_output ) list_btn.click( list_experiments_interface, inputs=[], outputs=view_output ) # Visualization Tab with gr.Tab("📊 Visualizations"): gr.Markdown("### Training Metrics Visualization") with gr.Row(): with gr.Column(): plot_exp_id = gr.Textbox( label="Experiment ID", placeholder="exp_20231201_143022" ) metric_dropdown = gr.Dropdown( label="Metric to Plot", choices=["loss", "accuracy", "learning_rate", "gpu_memory", "training_time"], value="loss" ) plot_btn = gr.Button("Create Plot", variant="primary") with gr.Column(): plot_output = gr.Plot(label="Training Metrics") plot_btn.click( create_metrics_plot, inputs=[plot_exp_id, metric_dropdown], outputs=plot_output ) gr.Markdown("### Experiment Comparison") with gr.Row(): with gr.Column(): comparison_exp_ids = gr.Textbox( label="Experiment IDs (comma-separated)", placeholder="exp_1,exp_2,exp_3" ) comparison_btn = gr.Button("Compare Experiments", variant="primary") with gr.Column(): comparison_plot = gr.Plot(label="Experiment Comparison") comparison_btn.click( create_experiment_comparison, inputs=[comparison_exp_ids], outputs=comparison_plot ) # Demo Data Tab with gr.Tab("🎯 Demo Data"): gr.Markdown("### Generate Demo Training Data") gr.Markdown("Use this to simulate training data for testing the interface") with gr.Row(): with gr.Column(): demo_exp_id = gr.Textbox( label="Experiment ID", placeholder="exp_20231201_143022" ) demo_btn = gr.Button("Generate Demo Data", variant="primary") create_demo_btn = gr.Button("Create Demo Experiment", variant="secondary") with gr.Column(): demo_output = gr.Textbox( label="Result", lines=5, interactive=False ) demo_btn.click( simulate_training_data, inputs=[demo_exp_id], outputs=demo_output ) create_demo_btn.click( create_demo_experiment, inputs=[], outputs=demo_output ) # Update Status Tab with gr.Tab("Update Status"): gr.Markdown("### Update Experiment Status") with gr.Row(): with gr.Column(): status_exp_id = gr.Textbox( label="Experiment ID", placeholder="exp_20231201_143022" ) status_dropdown = gr.Dropdown( label="Status", choices=["running", "completed", "failed", "paused"], value="running" ) update_status_btn = gr.Button("Update Status", variant="primary") with gr.Column(): status_output = gr.Textbox( label="Result", lines=3, interactive=False ) update_status_btn.click( update_experiment_status_interface, inputs=[status_exp_id, status_dropdown], outputs=status_output ) # Launch the app if __name__ == "__main__": demo.launch()