#!/usr/bin/env python3 """ SmolLM3 Fine-tuning Script for FlexAI Console Based on the nanoGPT structure but adapted for SmolLM3 model """ import os import sys import argparse import json import torch import logging from pathlib import Path from typing import Optional, Dict, Any # Add the current directory to the path for imports sys.path.append(os.path.dirname(os.path.abspath(__file__))) from config import get_config from model import SmolLM3Model from data import SmolLM3Dataset from trainer import SmolLM3Trainer def setup_logging(): """Setup logging configuration""" logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler(sys.stdout), logging.FileHandler('training.log') ] ) return logging.getLogger(__name__) def parse_args(): """Parse command line arguments""" parser = argparse.ArgumentParser(description='SmolLM3 Fine-tuning Script') # Configuration file parser.add_argument('config', type=str, help='Path to configuration file') # Dataset arguments parser.add_argument('--dataset_dir', type=str, default='my_dataset', help='Path to dataset directory within /input') # Checkpoint arguments parser.add_argument('--out_dir', type=str, default='/output-checkpoint', help='Output directory for checkpoints') parser.add_argument('--init_from', type=str, default='scratch', choices=['scratch', 'resume', 'pretrained'], help='Initialization method') # Training arguments parser.add_argument('--max_iters', type=int, default=None, help='Maximum number of training iterations') parser.add_argument('--batch_size', type=int, default=None, help='Batch size for training') parser.add_argument('--learning_rate', type=float, default=None, help='Learning rate') parser.add_argument('--gradient_accumulation_steps', type=int, default=None, help='Gradient accumulation steps') # Model arguments parser.add_argument('--model_name', type=str, default='HuggingFaceTB/SmolLM3-3B', help='Model name or path') parser.add_argument('--max_seq_length', type=int, default=4096, help='Maximum sequence length') # Logging and saving parser.add_argument('--save_steps', type=int, default=500, help='Save checkpoint every N steps') parser.add_argument('--eval_steps', type=int, default=100, help='Evaluate every N steps') parser.add_argument('--logging_steps', type=int, default=10, help='Log every N steps') # Trackio monitoring arguments parser.add_argument('--enable_tracking', action='store_true', default=True, help='Enable Trackio experiment tracking') parser.add_argument('--trackio_url', type=str, default=None, help='Trackio server URL') parser.add_argument('--trackio_token', type=str, default=None, help='Trackio authentication token') parser.add_argument('--experiment_name', type=str, default=None, help='Custom experiment name for tracking') return parser.parse_args() def main(): """Main training function""" args = parse_args() logger = setup_logging() logger.info("Starting SmolLM3 fine-tuning...") logger.info(f"Arguments: {vars(args)}") # Load configuration config = get_config(args.config) # Override config with command line arguments if args.max_iters is not None: config.max_iters = args.max_iters if args.batch_size is not None: config.batch_size = args.batch_size if args.learning_rate is not None: config.learning_rate = args.learning_rate if args.gradient_accumulation_steps is not None: config.gradient_accumulation_steps = args.gradient_accumulation_steps # Override Trackio configuration if args.enable_tracking is not None: config.enable_tracking = args.enable_tracking if args.trackio_url is not None: config.trackio_url = args.trackio_url if args.trackio_token is not None: config.trackio_token = args.trackio_token if args.experiment_name is not None: config.experiment_name = args.experiment_name # Setup paths output_path = args.out_dir # Ensure output directory exists os.makedirs(output_path, exist_ok=True) logger.info(f"Output path: {output_path}") # Initialize model model = SmolLM3Model( model_name=args.model_name, max_seq_length=args.max_seq_length, config=config ) # Determine dataset path if hasattr(config, 'dataset_name') and config.dataset_name: # Use Hugging Face dataset dataset_path = config.dataset_name logger.info(f"Using Hugging Face dataset: {dataset_path}") else: # Use local dataset dataset_path = os.path.join('/input', args.dataset_dir) logger.info(f"Using local dataset: {dataset_path}") # Load dataset with filtering options dataset = SmolLM3Dataset( data_path=dataset_path, tokenizer=model.tokenizer, max_seq_length=args.max_seq_length, filter_bad_entries=getattr(config, 'filter_bad_entries', False), bad_entry_field=getattr(config, 'bad_entry_field', 'bad_entry') ) # Initialize trainer trainer = SmolLM3Trainer( model=model, dataset=dataset, config=config, output_dir=output_path, init_from=args.init_from ) # Start training try: trainer.train() logger.info("Training completed successfully!") except Exception as e: logger.error(f"Training failed: {e}") raise if __name__ == '__main__': main()