#!/bin/bash # Interactive SmolLM3 End-to-End Fine-tuning Pipeline # This script creates a complete finetuning pipeline with user configuration set -e # Exit on any error # Colors for output RED='\033[0;31m' GREEN='\033[0;32m' YELLOW='\033[1;33m' BLUE='\033[0;34m' PURPLE='\033[0;35m' CYAN='\033[0;36m' NC='\033[0m' # No Color # Function to print colored output print_status() { echo -e "${GREEN}✅ $1${NC}" } print_warning() { echo -e "${YELLOW}⚠️ $1${NC}" } print_error() { echo -e "${RED}❌ $1${NC}" } print_info() { echo -e "${BLUE}ℹ️ $1${NC}" } print_header() { echo -e "${PURPLE}🚀 $1${NC}" } print_step() { echo -e "${CYAN}📋 $1${NC}" } # Function to get user input with default value get_input() { local prompt="$1" local default="$2" local var_name="$3" if [ -n "$default" ]; then read -p "$prompt [$default]: " input if [ -z "$input" ]; then input="$default" fi else read -p "$prompt: " input while [ -z "$input" ]; do print_error "This field is required!" read -p "$prompt: " input done fi eval "$var_name=\"$input\"" } # Function to select from options select_option() { local prompt="$1" local options=("${@:2}") local var_name="${!#}" echo "$prompt" for i in "${!options[@]}"; do echo " $((i+1)). ${options[$i]}" done while true; do read -p "Enter your choice (1-${#options[@]}): " choice if [[ "$choice" =~ ^[0-9]+$ ]] && [ "$choice" -ge 1 ] && [ "$choice" -le "${#options[@]}" ]; then eval "$var_name=\"${options[$((choice-1))]}\"" break else print_error "Invalid choice. Please enter a number between 1 and ${#options[@]}" fi done } # Function to validate HF token and get username validate_hf_token_and_get_username() { local token="$1" if [ -z "$token" ]; then return 1 fi # Use Python script for validation local result if result=$(python3 scripts/validate_hf_token.py "$token" 2>/dev/null); then # Parse JSON result using a more robust approach local success=$(echo "$result" | python3 -c " import sys, json try: data = json.load(sys.stdin) print(data.get('success', False)) except: print('False') ") local username=$(echo "$result" | python3 -c " import sys, json try: data = json.load(sys.stdin) print(data.get('username', '')) except: print('') ") local error=$(echo "$result" | python3 -c " import sys, json try: data = json.load(sys.stdin) print(data.get('error', 'Unknown error')) except: print('Failed to parse response') ") if [ "$success" = "True" ] && [ -n "$username" ]; then HF_USERNAME="$username" return 0 else print_error "Token validation failed: $error" return 1 fi else print_error "Failed to run token validation script. Make sure huggingface_hub is installed." return 1 fi } # Function to show training configurations show_training_configs() { echo "" print_header "Available Training Configurations" echo "======================================" echo "" echo "1. Basic Training (Default)" echo " - Model: SmolLM3-3B" echo " - Dataset: SmolTalk" echo " - Epochs: 3" echo " - Batch Size: 2" echo " - Learning Rate: 5e-6" echo "" echo "2. H100 Lightweight (Rapid)" echo " - Model: SmolLM3-3B" echo " - Dataset: OpenHermes-FR (80K samples)" echo " - Epochs: 1" echo " - Batch Size: 16" echo " - Learning Rate: 8e-6" echo " - Sequence Length: 8192" echo " - Optimized for H100 rapid training" echo "" echo "3. A100 Large Scale" echo " - Model: SmolLM3-3B" echo " - Dataset: OpenHermes-FR" echo " - Epochs: 1.3 passes" echo " - Batch Size: 8" echo " - Learning Rate: 5e-6" echo " - Sequence Length: 8192" echo "" echo "4. Multiple Passes" echo " - Model: SmolLM3-3B" echo " - Dataset: OpenHermes-FR" echo " - Epochs: 4 passes" echo " - Batch Size: 6" echo " - Learning Rate: 3e-6" echo " - Sequence Length: 8192" echo "" echo "5. Custom Configuration" echo " - User-defined parameters" echo "" } # Function to get training configuration get_training_config() { local config_type="$1" case "$config_type" in "Basic Training") MODEL_NAME="HuggingFaceTB/SmolLM3-3B" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=3 BATCH_SIZE=2 GRADIENT_ACCUMULATION_STEPS=8 LEARNING_RATE=5e-6 MAX_SEQ_LENGTH=4096 CONFIG_FILE="config/train_smollm3.py" ;; "H100 Lightweight (Rapid)") MODEL_NAME="HuggingFaceTB/SmolLM3-3B" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=1 BATCH_SIZE=16 GRADIENT_ACCUMULATION_STEPS=4 LEARNING_RATE=8e-6 MAX_SEQ_LENGTH=8192 DATASET_SAMPLE_SIZE=80000 CONFIG_FILE="config/train_smollm3_h100_lightweight.py" ;; "A100 Large Scale") MODEL_NAME="HuggingFaceTB/SmolLM3-3B" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=1 BATCH_SIZE=8 GRADIENT_ACCUMULATION_STEPS=16 LEARNING_RATE=5e-6 MAX_SEQ_LENGTH=8192 CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_large.py" ;; "Multiple Passes") MODEL_NAME="HuggingFaceTB/SmolLM3-3B" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=4 BATCH_SIZE=6 GRADIENT_ACCUMULATION_STEPS=20 LEARNING_RATE=3e-6 MAX_SEQ_LENGTH=8192 CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_multiple_passes.py" ;; "Custom Configuration") get_custom_config ;; esac } # Function to get custom configuration get_custom_config() { print_step "Custom Configuration Setup" echo "=============================" get_input "Model name" "HuggingFaceTB/SmolLM3-3B" MODEL_NAME get_input "Dataset name" "HuggingFaceTB/smoltalk" DATASET_NAME get_input "Number of epochs" "3" MAX_EPOCHS get_input "Batch size" "2" BATCH_SIZE get_input "Gradient accumulation steps" "8" GRADIENT_ACCUMULATION_STEPS get_input "Learning rate" "5e-6" LEARNING_RATE get_input "Max sequence length" "4096" MAX_SEQ_LENGTH # Select config file based on dataset if [[ "$DATASET_NAME" == *"openhermes"* ]]; then CONFIG_FILE="config/train_smollm3_openhermes_fr.py" else CONFIG_FILE="config/train_smollm3.py" fi } # Function to create training configuration file create_training_config() { local config_file="$1" cat > "$config_file" << EOF """ SmolLM3 Training Configuration - Generated by launch.sh Optimized for: $TRAINING_CONFIG_TYPE """ from config.train_smollm3 import SmolLM3Config config = SmolLM3Config( # Trainer type selection trainer_type="$TRAINER_TYPE", # Model configuration model_name="$MODEL_NAME", max_seq_length=$MAX_SEQ_LENGTH, use_flash_attention=True, use_gradient_checkpointing=True, # Training configuration batch_size=$BATCH_SIZE, gradient_accumulation_steps=$GRADIENT_ACCUMULATION_STEPS, learning_rate=$LEARNING_RATE, weight_decay=0.01, warmup_steps=100, max_iters=None, # Will be calculated based on epochs eval_interval=100, log_interval=10, save_interval=500, # Optimizer configuration optimizer="adamw", beta1=0.9, beta2=0.95, eps=1e-8, # Scheduler configuration scheduler="cosine", min_lr=1e-6, # Mixed precision fp16=True, bf16=False, # Logging and saving save_steps=$SAVE_STEPS, eval_steps=$EVAL_STEPS, logging_steps=$LOGGING_STEPS, save_total_limit=3, # Evaluation eval_strategy="steps", metric_for_best_model="eval_loss", greater_is_better=False, load_best_model_at_end=True, # Data configuration dataset_name="$DATASET_NAME", dataset_split="train", input_field="prompt", target_field="completion", filter_bad_entries=False, bad_entry_field="bad_entry", # Chat template configuration use_chat_template=True, chat_template_kwargs={ "enable_thinking": False, "add_generation_prompt": True, "no_think_system_message": True }, # Trackio monitoring configuration enable_tracking=True, trackio_url="$TRACKIO_URL", trackio_token=None, log_artifacts=True, log_metrics=True, log_config=True, experiment_name="$EXPERIMENT_NAME", # HF Datasets configuration dataset_repo="$TRACKIO_DATASET_REPO" ) EOF } # Main script starts here print_header "SmolLM3 End-to-End Fine-tuning Pipeline" echo "==============================================" echo "" # Step 1: Get user credentials (only token needed now) print_step "Step 1: User Authentication" echo "================================" get_input "Hugging Face token (get from https://huggingface.co/settings/tokens)" "" HF_TOKEN # Validate HF token and get username automatically print_info "Validating Hugging Face token and getting username..." if validate_hf_token_and_get_username "$HF_TOKEN"; then print_status "HF token validated successfully" print_info "Username: $HF_USERNAME" else print_error "Invalid HF token. Please check your token and try again." exit 1 fi # Step 2: Select training configuration print_step "Step 2: Training Configuration" echo "==================================" show_training_configs select_option "Select training configuration:" "Basic Training" "H100 Lightweight (Rapid)" "A100 Large Scale" "Multiple Passes" "Custom Configuration" TRAINING_CONFIG_TYPE get_training_config "$TRAINING_CONFIG_TYPE" # Step 3: Get experiment details print_step "Step 3: Experiment Details" echo "==============================" get_input "Experiment name" "smollm3_finetune_$(date +%Y%m%d_%H%M%S)" EXPERIMENT_NAME get_input "Model repository name" "$HF_USERNAME/smollm3-finetuned-$(date +%Y%m%d)" REPO_NAME # Automatically create dataset repository print_info "Setting up Trackio dataset repository automatically..." # Ask if user wants to customize dataset name echo "" echo "Dataset repository options:" echo "1. Use default name (trackio-experiments)" echo "2. Customize dataset name" echo "" read -p "Choose option (1/2): " dataset_option if [ "$dataset_option" = "2" ]; then get_input "Custom dataset name (without username)" "trackio-experiments" CUSTOM_DATASET_NAME if python3 scripts/dataset_tonic/setup_hf_dataset.py "$CUSTOM_DATASET_NAME" 2>/dev/null; then TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" print_status "Custom dataset repository created successfully" else print_warning "Custom dataset creation failed, using default" if python3 scripts/dataset_tonic/setup_hf_dataset.py 2>/dev/null; then TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" print_status "Default dataset repository created successfully" else print_warning "Automatic dataset creation failed, using manual input" get_input "Trackio dataset repository" "$HF_USERNAME/trackio-experiments" TRACKIO_DATASET_REPO fi fi else if python3 scripts/dataset_tonic/setup_hf_dataset.py 2>/dev/null; then TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" print_status "Dataset repository created successfully" else print_warning "Automatic dataset creation failed, using manual input" get_input "Trackio dataset repository" "$HF_USERNAME/trackio-experiments" TRACKIO_DATASET_REPO fi fi # Step 3.5: Select trainer type print_step "Step 3.5: Trainer Type Selection" echo "====================================" echo "Select the type of training to perform:" echo "1. SFT (Supervised Fine-tuning) - Standard instruction tuning" echo " - Uses SFTTrainer for instruction following" echo " - Suitable for most fine-tuning tasks" echo " - Optimized for instruction datasets" echo "" echo "2. DPO (Direct Preference Optimization) - Preference-based training" echo " - Uses DPOTrainer for preference learning" echo " - Requires preference datasets (chosen/rejected pairs)" echo " - Optimizes for human preferences" echo "" select_option "Select trainer type:" "SFT" "DPO" TRAINER_TYPE # Step 4: Training parameters print_step "Step 4: Training Parameters" echo "===============================" echo "Current configuration:" echo " Model: $MODEL_NAME" echo " Dataset: $DATASET_NAME" echo " Trainer Type: $TRAINER_TYPE" if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}" fi echo " Epochs: $MAX_EPOCHS" echo " Batch Size: $BATCH_SIZE" echo " Gradient Accumulation: $GRADIENT_ACCUMULATION_STEPS" echo " Learning Rate: $LEARNING_RATE" echo " Sequence Length: $MAX_SEQ_LENGTH" get_input "Save steps" "500" SAVE_STEPS get_input "Evaluation steps" "100" EVAL_STEPS get_input "Logging steps" "10" LOGGING_STEPS # Step 5: Trackio Space configuration print_step "Step 5: Trackio Space Configuration" echo "======================================" get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME" # Step 6: Confirm configuration print_step "Step 6: Configuration Summary" echo "=================================" echo "" echo "📋 Configuration Summary:" echo "========================" echo " User: $HF_USERNAME (auto-detected from token)" echo " Experiment: $EXPERIMENT_NAME" echo " Model: $MODEL_NAME" echo " Dataset: $DATASET_NAME" echo " Training Config: $TRAINING_CONFIG_TYPE" echo " Trainer Type: $TRAINER_TYPE" if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}" fi echo " Epochs: $MAX_EPOCHS" echo " Batch Size: $BATCH_SIZE" echo " Learning Rate: $LEARNING_RATE" echo " Model Repo: $REPO_NAME" echo " Trackio Space: $TRACKIO_URL" echo " HF Dataset: $TRACKIO_DATASET_REPO" echo "" read -p "Proceed with this configuration? (y/N): " confirm if [[ ! "$confirm" =~ ^[Yy]$ ]]; then print_info "Configuration cancelled. Exiting." exit 0 fi # Step 7: Environment setup print_step "Step 7: Environment Setup" echo "============================" print_info "Installing system dependencies..." # Check if we're already root or if sudo is available if [ "$EUID" -eq 0 ]; then # Already root, no need for sudo print_info "Running as root, skipping sudo..." apt-get update apt-get install -y git curl wget unzip python3-pip python3-venv elif command -v sudo >/dev/null 2>&1; then # sudo is available, use it print_info "Using sudo for system dependencies..." sudo apt-get update sudo apt-get install -y git curl wget unzip python3-pip python3-venv else # No sudo available, try without it print_warning "sudo not available, attempting to install without sudo..." if command -v apt-get >/dev/null 2>&1; then apt-get update apt-get install -y git curl wget unzip python3-pip python3-venv else print_warning "apt-get not available, skipping system dependencies..." print_info "Please ensure git, curl, wget, unzip, python3-pip, and python3-venv are installed" fi fi print_info "Creating Python virtual environment..." python3 -m venv smollm3_env source smollm3_env/bin/activate print_info "Installing PyTorch with CUDA support..." pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 print_info "Installing project dependencies..." pip install -r requirements/requirements_core.txt print_info "Installing additional dependencies..." pip install trl>=0.7.0 pip install peft>=0.4.0 pip install accelerate>=0.20.0 pip install huggingface-hub>=0.16.0 pip install datasets>=2.14.0 pip install requests>=2.31.0 # Step 8: Authentication setup print_step "Step 8: Authentication Setup" echo "================================" export HF_TOKEN="$HF_TOKEN" export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" # Login to Hugging Face with token print_info "Logging in to Hugging Face..." if hf login --token "$HF_TOKEN" --add-to-git-credential; then print_status "Successfully logged in to Hugging Face" print_info "Username: $(hf whoami)" else print_error "Failed to login to Hugging Face" print_error "Please check your token and try again" exit 1 fi # Configure git for HF operations print_step "Step 8.1: Git Configuration" echo "================================" print_info "Configuring git for Hugging Face operations..." # Get user's email for git configuration get_input "Enter the email you used to register your account at huggingface for git configuration" "" GIT_EMAIL # Configure git locally (not globally) for this project git config user.email "$GIT_EMAIL" git config user.name "$HF_USERNAME" # Verify git configuration print_info "Verifying git configuration..." if git config user.email && git config user.name; then print_status "Git configured successfully" print_info " Email: $(git config user.email)" print_info " Name: $(git config user.name)" else print_error "Failed to configure git" exit 1 fi # Step 9: Deploy Trackio Space (automated) print_step "Step 9: Deploying Trackio Space" echo "===================================" cd scripts/trackio_tonic print_info "Deploying Trackio Space ..." print_info "Space name: $TRACKIO_SPACE_NAME" print_info "Username will be auto-detected from token" print_info "Secrets will be set automatically via API" # Run deployment script with automated features python deploy_trackio_space.py << EOF $TRACKIO_SPACE_NAME $HF_TOKEN $GIT_EMAIL EOF print_status "Trackio Space deployed: $TRACKIO_URL" # Step 10: Setup HF Dataset (automated) print_step "Step 10: Setting up HF Dataset" echo "==================================" cd ../dataset_tonic print_info "Setting up HF Dataset with automated features..." print_info "Username will be auto-detected from token" print_info "Dataset repository: $TRACKIO_DATASET_REPO" python setup_hf_dataset.py # Step 11: Configure Trackio (automated) print_step "Step 11: Configuring Trackio" echo "=================================" cd ../trackio_tonic print_info "Configuring Trackio ..." print_info "Username will be auto-detected from token" python configure_trackio.py # Step 12: Training Configuration print_step "Step 12: Training Configuration" echo "===================================" cd ../.. print_info "Using existing configuration file: $CONFIG_FILE" # Step 13: Dataset Configuration print_step "Step 13: Dataset Configuration" echo "==================================" print_info "Dataset will be loaded directly by src/data.py during training" print_info "Dataset: $DATASET_NAME" if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then print_info "Sample size: ${DATASET_SAMPLE_SIZE:-80000} (will be handled by data.py)" fi # Step 14: Training Parameters print_step "Step 14: Training Parameters" echo "================================" print_info "Training parameters will be loaded from configuration file" print_info "Model: $MODEL_NAME" print_info "Dataset: $DATASET_NAME" print_info "Batch size: $BATCH_SIZE" print_info "Learning rate: $LEARNING_RATE" # Step 15: Start training print_step "Step 15: Starting Training" echo "==============================" print_info "Starting training with configuration: $CONFIG_FILE" print_info "Experiment: $EXPERIMENT_NAME" print_info "Output: /output-checkpoint" print_info "Trackio: $TRACKIO_URL" # Run the simpler training script python scripts/training/train.py \ --config "$CONFIG_FILE" \ --experiment-name "$EXPERIMENT_NAME" \ --output-dir /output-checkpoint \ --trackio-url "$TRACKIO_URL" \ --trainer-type "$TRAINER_TYPE" # Step 16: Push model to Hugging Face Hub print_step "Step 16: Pushing Model to HF Hub" echo "=====================================" print_info "Pushing model to: $REPO_NAME" print_info "Checkpoint: /output-checkpoint" # Run the push script python scripts/model_tonic/push_to_huggingface.py /output-checkpoint "$REPO_NAME" \ --token "$HF_TOKEN" \ --trackio-url "$TRACKIO_URL" \ --experiment-name "$EXPERIMENT_NAME" \ --dataset-repo "$TRACKIO_DATASET_REPO" # Step 16.5: Quantization Options print_step "Step 16.5: Model Quantization Options" echo "==========================================" print_info "Would you like to create quantized versions of your model?" print_info "Quantization reduces model size and improves inference speed." # Ask about quantization get_input "Create quantized models? (y/n)" "y" "CREATE_QUANTIZED" if [ "$CREATE_QUANTIZED" = "y" ] || [ "$CREATE_QUANTIZED" = "Y" ]; then print_info "Quantization options:" print_info "1. int8_weight_only (GPU optimized, ~50% memory reduction)" print_info "2. int4_weight_only (CPU optimized, ~75% memory reduction)" print_info "3. Both int8 and int4 versions" select_option "Select quantization type:" "int8_weight_only" "int4_weight_only" "both" "QUANT_TYPE" if [ "$QUANT_TYPE" = "both" ]; then # Create both int8 and int4 versions in the same repository print_info "Creating int8 (GPU) quantized model..." python scripts/model_tonic/quantize_model.py /output-checkpoint "$REPO_NAME" \ --quant-type "int8_weight_only" \ --device "auto" \ --token "$HF_TOKEN" \ --trackio-url "$TRACKIO_URL" \ --experiment-name "${EXPERIMENT_NAME}-int8" \ --dataset-repo "$TRACKIO_DATASET_REPO" print_info "Creating int4 (CPU) quantized model..." python scripts/model_tonic/quantize_model.py /output-checkpoint "$REPO_NAME" \ --quant-type "int4_weight_only" \ --device "cpu" \ --token "$HF_TOKEN" \ --trackio-url "$TRACKIO_URL" \ --experiment-name "${EXPERIMENT_NAME}-int4" \ --dataset-repo "$TRACKIO_DATASET_REPO" print_status "✅ Both quantized models created in the same repository:" print_info "Main model: https://huggingface.co/$REPO_NAME" print_info "int8 (GPU): https://huggingface.co/$REPO_NAME/int8" print_info "int4 (CPU): https://huggingface.co/$REPO_NAME/int4" else # Create single quantized version in the same repository print_info "Creating ${QUANT_TYPE} quantized model..." DEVICE="auto" if [ "$QUANT_TYPE" = "int4_weight_only" ]; then DEVICE="cpu" fi python scripts/model_tonic/quantize_model.py /output-checkpoint "$REPO_NAME" \ --quant-type "$QUANT_TYPE" \ --device "$DEVICE" \ --token "$HF_TOKEN" \ --trackio-url "$TRACKIO_URL" \ --experiment-name "${EXPERIMENT_NAME}-${QUANT_TYPE}" \ --dataset-repo "$TRACKIO_DATASET_REPO" print_status "✅ Quantized model created: https://huggingface.co/$REPO_NAME/${QUANT_TYPE//_/-}" fi else print_info "Skipping quantization" fi # Step 17: Create summary report print_step "Step 17: Creating Summary Report" echo "====================================" cat > training_summary.md << EOF # SmolLM3 Fine-tuning Summary ## Configuration - **Model**: $MODEL_NAME - **Dataset**: $DATASET_NAME - **Experiment**: $EXPERIMENT_NAME - **Repository**: $REPO_NAME - **Trackio Space**: $TRACKIO_URL - **HF Dataset**: $TRACKIO_DATASET_REPO - **Training Config**: $TRAINING_CONFIG_TYPE - **Trainer Type**: $TRAINER_TYPE $(if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then echo "- **Dataset Sample Size**: ${DATASET_SAMPLE_SIZE:-80000}" fi) ## Training Parameters - **Batch Size**: $BATCH_SIZE - **Gradient Accumulation**: $GRADIENT_ACCUMULATION_STEPS - **Learning Rate**: $LEARNING_RATE - **Max Epochs**: $MAX_EPOCHS - **Sequence Length**: $MAX_SEQ_LENGTH ## Results - **Model Repository**: https://huggingface.co/$REPO_NAME - **Trackio Monitoring**: $TRACKIO_URL - **Experiment Data**: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO $(if [ "$CREATE_QUANTIZED" = "y" ] || [ "$CREATE_QUANTIZED" = "Y" ]; then echo "- **Quantization**: $QUANT_TYPE" if [ "$QUANT_TYPE" = "both" ]; then echo "- **int8 Model (GPU)**: https://huggingface.co/$REPO_NAME/int8" echo "- **int4 Model (CPU)**: https://huggingface.co/$REPO_NAME/int4" else echo "- **Quantized Model**: https://huggingface.co/$REPO_NAME/${QUANT_TYPE//_/-}" fi fi) ## Next Steps 1. Monitor training progress in your Trackio Space 2. Check the model repository on Hugging Face Hub 3. Use the model in your applications 4. Share your results with the community ## Files Created - Training configuration: \`$CONFIG_FILE\` - Model checkpoint: \`/output-checkpoint/\` - Training logs: \`training.log\` - Summary report: \`training_summary.md\` EOF print_status "Summary report saved to: training_summary.md" # Final summary echo "" print_header "🎉 End-to-End Pipeline Completed Successfully!" echo "==================================================" echo "" echo "📊 Model: https://huggingface.co/$REPO_NAME" echo "📈 Trackio: $TRACKIO_URL" echo "📋 Experiment: $EXPERIMENT_NAME" echo "📊 Dataset: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO" $(if [ "$CREATE_QUANTIZED" = "y" ] || [ "$CREATE_QUANTIZED" = "Y" ]; then echo "" echo "🔧 Quantized Models:" if [ "$QUANT_TYPE" = "both" ]; then echo " 📊 int8 (GPU): https://huggingface.co/$REPO_NAME/int8" echo " 📊 int4 (CPU): https://huggingface.co/$REPO_NAME/int4" else echo " 📊 $QUANT_TYPE: https://huggingface.co/$REPO_NAME/${QUANT_TYPE//_/-}" fi fi) echo "" echo "📋 Summary report saved to: training_summary.md" echo "" echo "🚀 Next steps:" echo "1. Monitor training progress in your Trackio Space" echo "2. Check the model repository on Hugging Face Hub" echo "3. Use the model in your applications" echo "4. Share your results with the community" echo "" print_status "Pipeline completed successfully!"