#!/bin/bash # Interactive SmolLM3 End-to-End Fine-tuning Pipeline # This script creates a complete finetuning pipeline with user configuration set -e # Exit on any error # Colors for output RED='\033[0;31m' GREEN='\033[0;32m' YELLOW='\033[1;33m' BLUE='\033[0;34m' PURPLE='\033[0;35m' CYAN='\033[0;36m' NC='\033[0m' # No Color # Function to print colored output print_status() { echo -e "${GREEN}✅ $1${NC}" } print_warning() { echo -e "${YELLOW}⚠️ $1${NC}" } print_error() { echo -e "${RED}❌ $1${NC}" } print_info() { echo -e "${BLUE}ℹ️ $1${NC}" } print_header() { echo -e "${PURPLE}🚀 $1${NC}" } print_step() { echo -e "${CYAN}📋 $1${NC}" } # Function to get user input with default value get_input() { local prompt="$1" local default="$2" local var_name="$3" if [ -n "$default" ]; then read -p "$prompt [$default]: " input if [ -z "$input" ]; then input="$default" fi else read -p "$prompt: " input while [ -z "$input" ]; do print_error "This field is required!" read -p "$prompt: " input done fi eval "$var_name=\"$input\"" } # Function to select from options select_option() { local prompt="$1" local options=("${@:2}") local var_name="${!#}" echo "$prompt" for i in "${!options[@]}"; do echo " $((i+1)). ${options[$i]}" done while true; do read -p "Enter your choice (1-${#options[@]}): " choice if [[ "$choice" =~ ^[0-9]+$ ]] && [ "$choice" -ge 1 ] && [ "$choice" -le "${#options[@]}" ]; then eval "$var_name=\"${options[$((choice-1))]}\"" break else print_error "Invalid choice. Please enter a number between 1 and ${#options[@]}" fi done } # Function to validate HF token validate_hf_token() { local token="$1" if [ -z "$token" ]; then return 1 fi # Test the token export HF_TOKEN="$token" if huggingface-cli whoami >/dev/null 2>&1; then return 0 else return 1 fi } # Function to show training configurations show_training_configs() { echo "" print_header "Available Training Configurations" echo "======================================" echo "" echo "1. Basic Training (Default)" echo " - Model: SmolLM3-3B" echo " - Dataset: SmolTalk" echo " - Epochs: 3" echo " - Batch Size: 2" echo " - Learning Rate: 5e-6" echo "" echo "2. H100 Lightweight (Rapid)" echo " - Model: SmolLM3-3B" echo " - Dataset: OpenHermes-FR (80K samples)" echo " - Epochs: 1" echo " - Batch Size: 16" echo " - Learning Rate: 8e-6" echo " - Sequence Length: 8192" echo " - Optimized for H100 rapid training" echo "" echo "3. A100 Large Scale" echo " - Model: SmolLM3-3B" echo " - Dataset: OpenHermes-FR" echo " - Epochs: 1.3 passes" echo " - Batch Size: 8" echo " - Learning Rate: 5e-6" echo " - Sequence Length: 8192" echo "" echo "4. Multiple Passes" echo " - Model: SmolLM3-3B" echo " - Dataset: OpenHermes-FR" echo " - Epochs: 4 passes" echo " - Batch Size: 6" echo " - Learning Rate: 3e-6" echo " - Sequence Length: 8192" echo "" echo "5. Custom Configuration" echo " - User-defined parameters" echo "" } # Function to get training configuration get_training_config() { local config_type="$1" case "$config_type" in "Basic Training") MODEL_NAME="HuggingFaceTB/SmolLM3-3B" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=3 BATCH_SIZE=2 GRADIENT_ACCUMULATION_STEPS=8 LEARNING_RATE=5e-6 MAX_SEQ_LENGTH=4096 CONFIG_FILE="config/train_smollm3.py" ;; "H100 Lightweight (Rapid)") MODEL_NAME="HuggingFaceTB/SmolLM3-3B" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=1 BATCH_SIZE=16 GRADIENT_ACCUMULATION_STEPS=4 LEARNING_RATE=8e-6 MAX_SEQ_LENGTH=8192 DATASET_SAMPLE_SIZE=80000 CONFIG_FILE="config/train_smollm3_h100_lightweight.py" ;; "A100 Large Scale") MODEL_NAME="HuggingFaceTB/SmolLM3-3B" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=1 BATCH_SIZE=8 GRADIENT_ACCUMULATION_STEPS=16 LEARNING_RATE=5e-6 MAX_SEQ_LENGTH=8192 CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_large.py" ;; "Multiple Passes") MODEL_NAME="HuggingFaceTB/SmolLM3-3B" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=4 BATCH_SIZE=6 GRADIENT_ACCUMULATION_STEPS=20 LEARNING_RATE=3e-6 MAX_SEQ_LENGTH=8192 CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_multiple_passes.py" ;; "Custom Configuration") get_custom_config ;; esac } # Function to get custom configuration get_custom_config() { print_step "Custom Configuration Setup" echo "=============================" get_input "Model name" "HuggingFaceTB/SmolLM3-3B" MODEL_NAME get_input "Dataset name" "HuggingFaceTB/smoltalk" DATASET_NAME get_input "Number of epochs" "3" MAX_EPOCHS get_input "Batch size" "2" BATCH_SIZE get_input "Gradient accumulation steps" "8" GRADIENT_ACCUMULATION_STEPS get_input "Learning rate" "5e-6" LEARNING_RATE get_input "Max sequence length" "4096" MAX_SEQ_LENGTH # Select config file based on dataset if [[ "$DATASET_NAME" == *"openhermes"* ]]; then CONFIG_FILE="config/train_smollm3_openhermes_fr.py" else CONFIG_FILE="config/train_smollm3.py" fi } # Function to create training configuration file create_training_config() { local config_file="$1" cat > "$config_file" << EOF """ SmolLM3 Training Configuration - Generated by launch.sh Optimized for: $TRAINING_CONFIG_TYPE """ from config.train_smollm3 import SmolLM3Config config = SmolLM3Config( # Model configuration model_name="$MODEL_NAME", max_seq_length=$MAX_SEQ_LENGTH, use_flash_attention=True, use_gradient_checkpointing=True, # Training configuration batch_size=$BATCH_SIZE, gradient_accumulation_steps=$GRADIENT_ACCUMULATION_STEPS, learning_rate=$LEARNING_RATE, weight_decay=0.01, warmup_steps=100, max_iters=None, # Will be calculated based on epochs eval_interval=100, log_interval=10, save_interval=500, # Optimizer configuration optimizer="adamw", beta1=0.9, beta2=0.95, eps=1e-8, # Scheduler configuration scheduler="cosine", min_lr=1e-6, # Mixed precision fp16=True, bf16=False, # Logging and saving save_steps=$SAVE_STEPS, eval_steps=$EVAL_STEPS, logging_steps=$LOGGING_STEPS, save_total_limit=3, # Evaluation eval_strategy="steps", metric_for_best_model="eval_loss", greater_is_better=False, load_best_model_at_end=True, # Data configuration dataset_name="$DATASET_NAME", dataset_split="train", input_field="prompt", target_field="completion", filter_bad_entries=False, bad_entry_field="bad_entry", # Chat template configuration use_chat_template=True, chat_template_kwargs={ "enable_thinking": False, "add_generation_prompt": True, "no_think_system_message": True }, # Trackio monitoring configuration enable_tracking=True, trackio_url="$TRACKIO_URL", trackio_token=None, log_artifacts=True, log_metrics=True, log_config=True, experiment_name="$EXPERIMENT_NAME", # HF Datasets configuration dataset_repo="$TRACKIO_DATASET_REPO" ) EOF } # Main script starts here print_header "SmolLM3 End-to-End Fine-tuning Pipeline" echo "==============================================" echo "" # Step 1: Get user credentials print_step "Step 1: User Authentication" echo "================================" get_input "Hugging Face username" "" HF_USERNAME get_input "Hugging Face token (get from https://huggingface.co/settings/tokens)" "" HF_TOKEN # Validate HF token print_info "Validating Hugging Face token..." if validate_hf_token "$HF_TOKEN"; then print_status "HF token validated successfully" else print_error "Invalid HF token. Please check your token and try again." exit 1 fi # Step 2: Select training configuration print_step "Step 2: Training Configuration" echo "==================================" show_training_configs select_option "Select training configuration:" "Basic Training" "H100 Lightweight (Rapid)" "A100 Large Scale" "Multiple Passes" "Custom Configuration" TRAINING_CONFIG_TYPE get_training_config "$TRAINING_CONFIG_TYPE" # Step 3: Get experiment details print_step "Step 3: Experiment Details" echo "==============================" get_input "Experiment name" "smollm3_finetune_$(date +%Y%m%d_%H%M%S)" EXPERIMENT_NAME get_input "Model repository name" "$HF_USERNAME/smollm3-finetuned-$(date +%Y%m%d)" REPO_NAME get_input "Trackio dataset repository" "$HF_USERNAME/trackio-experiments" TRACKIO_DATASET_REPO # Step 4: Training parameters print_step "Step 4: Training Parameters" echo "===============================" echo "Current configuration:" echo " Model: $MODEL_NAME" echo " Dataset: $DATASET_NAME" if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}" fi echo " Epochs: $MAX_EPOCHS" echo " Batch Size: $BATCH_SIZE" echo " Gradient Accumulation: $GRADIENT_ACCUMULATION_STEPS" echo " Learning Rate: $LEARNING_RATE" echo " Sequence Length: $MAX_SEQ_LENGTH" get_input "Save steps" "500" SAVE_STEPS get_input "Evaluation steps" "100" EVAL_STEPS get_input "Logging steps" "10" LOGGING_STEPS # Step 5: Trackio Space configuration print_step "Step 5: Trackio Space Configuration" echo "======================================" get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME" # Step 6: Confirm configuration print_step "Step 6: Configuration Summary" echo "=================================" echo "" echo "📋 Configuration Summary:" echo "========================" echo " User: $HF_USERNAME" echo " Experiment: $EXPERIMENT_NAME" echo " Model: $MODEL_NAME" echo " Dataset: $DATASET_NAME" echo " Training Config: $TRAINING_CONFIG_TYPE" if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}" fi echo " Epochs: $MAX_EPOCHS" echo " Batch Size: $BATCH_SIZE" echo " Learning Rate: $LEARNING_RATE" echo " Model Repo: $REPO_NAME" echo " Trackio Space: $TRACKIO_URL" echo " HF Dataset: $TRACKIO_DATASET_REPO" echo "" read -p "Proceed with this configuration? (y/N): " confirm if [[ ! "$confirm" =~ ^[Yy]$ ]]; then print_info "Configuration cancelled. Exiting." exit 0 fi # Step 7: Environment setup print_step "Step 7: Environment Setup" echo "============================" print_info "Installing system dependencies..." sudo apt-get update sudo apt-get install -y git curl wget unzip python3-pip python3-venv print_info "Creating Python virtual environment..." python3 -m venv smollm3_env source smollm3_env/bin/activate print_info "Installing PyTorch with CUDA support..." pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 print_info "Installing project dependencies..." pip install -r requirements/requirements_core.txt print_info "Installing additional dependencies..." pip install trl>=0.7.0 pip install peft>=0.4.0 pip install accelerate>=0.20.0 pip install huggingface-hub>=0.16.0 pip install datasets>=2.14.0 pip install requests>=2.31.0 # Step 8: Authentication setup print_step "Step 8: Authentication Setup" echo "================================" export HF_TOKEN="$HF_TOKEN" export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" huggingface-cli login --token $HF_TOKEN # Step 9: Deploy Trackio Space print_step "Step 9: Deploying Trackio Space" echo "===================================" cd scripts/trackio_tonic # Create deployment script input cat > deploy_input.txt << EOF $HF_USERNAME $TRACKIO_SPACE_NAME $HF_TOKEN EOF # Run deployment script python deploy_trackio_space.py < deploy_input.txt print_status "Trackio Space deployed: $TRACKIO_URL" # Step 10: Setup HF Dataset print_step "Step 10: Setting up HF Dataset" echo "==================================" cd ../dataset_tonic python setup_hf_dataset.py # Step 11: Configure Trackio print_step "Step 11: Configuring Trackio" echo "=================================" cd ../trackio_tonic python configure_trackio.py # Step 12: Create training configuration print_step "Step 12: Creating Training Configuration" echo "===========================================" cd ../.. create_training_config "$CONFIG_FILE" # Step 13: Download and prepare dataset print_step "Step 13: Preparing Dataset" echo "===============================" python -c " from datasets import load_dataset import json import os import random # Load dataset print('Loading dataset: $DATASET_NAME') dataset = load_dataset('$DATASET_NAME') # Create dataset directory os.makedirs('training_dataset', exist_ok=True) # Convert to training format def convert_to_training_format(example): # Handle different dataset formats if 'prompt' in example and 'completion' in example: return { 'prompt': example['prompt'], 'completion': example['completion'] } elif 'instruction' in example and 'output' in example: return { 'prompt': example['instruction'], 'completion': example['output'] } elif 'messages' in example: # Handle chat format messages = example['messages'] if len(messages) >= 2: return { 'prompt': messages[0]['content'], 'completion': messages[1]['content'] } else: # Fallback return { 'prompt': str(example.get('input', '')), 'completion': str(example.get('output', '')) } # Process train split train_data = [] for example in dataset['train']: training_example = convert_to_training_format(example) if training_example['prompt'] and training_example['completion']: train_data.append(training_example) # Apply dataset sampling for lightweight configuration if '$TRAINING_CONFIG_TYPE' == 'H100 Lightweight (Rapid)' and len(train_data) > ${DATASET_SAMPLE_SIZE:-0}: print(f'Sampling {${DATASET_SAMPLE_SIZE:-80000}} random samples from {len(train_data)} total samples') random.seed(42) # For reproducibility train_data = random.sample(train_data, ${DATASET_SAMPLE_SIZE:-80000}) print(f'Selected {len(train_data)} samples for lightweight training') # Process validation split if available val_data = [] if 'validation' in dataset: for example in dataset['validation']: training_example = convert_to_training_format(example) if training_example['prompt'] and training_example['completion']: val_data.append(training_example) # For lightweight config, also sample validation if it's large if '$TRAINING_CONFIG_TYPE' == 'H100 Lightweight (Rapid)' and len(val_data) > 1000: print(f'Sampling 1000 random validation samples from {len(val_data)} total') random.seed(42) # For reproducibility val_data = random.sample(val_data, 1000) # Save to files with open('training_dataset/train.json', 'w') as f: json.dump(train_data, f, indent=2) if val_data: with open('training_dataset/validation.json', 'w') as f: json.dump(val_data, f, indent=2) print(f'Dataset prepared: {len(train_data)} train samples, {len(val_data)} validation samples') " # Step 14: Calculate training parameters print_step "Step 14: Calculating Training Parameters" echo "============================================" TOTAL_SAMPLES=$(python -c "import json; data=json.load(open('training_dataset/train.json')); print(len(data))") EFFECTIVE_BATCH_SIZE=$((BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS)) STEPS_PER_EPOCH=$((TOTAL_SAMPLES / EFFECTIVE_BATCH_SIZE)) MAX_STEPS=$((STEPS_PER_EPOCH * MAX_EPOCHS)) echo " Total samples: $TOTAL_SAMPLES" echo " Effective batch size: $EFFECTIVE_BATCH_SIZE" echo " Steps per epoch: $STEPS_PER_EPOCH" echo " Total training steps: $MAX_STEPS" # Step 15: Start training print_step "Step 15: Starting Training" echo "==============================" python src/train.py "$CONFIG_FILE" \ --dataset_dir training_dataset \ --out_dir /output-checkpoint \ --init_from scratch \ --max_iters $MAX_STEPS \ --batch_size $BATCH_SIZE \ --learning_rate $LEARNING_RATE \ --gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \ --max_seq_length $MAX_SEQ_LENGTH \ --save_steps $SAVE_STEPS \ --eval_steps $EVAL_STEPS \ --logging_steps $LOGGING_STEPS \ --enable_tracking \ --trackio_url "$TRACKIO_URL" \ --experiment_name "$EXPERIMENT_NAME" \ --hf_token "$HF_TOKEN" \ --dataset_repo "$TRACKIO_DATASET_REPO" # Step 16: Push model to Hugging Face Hub print_step "Step 16: Pushing Model to HF Hub" echo "=====================================" python scripts/model_tonic/push_to_huggingface.py /output-checkpoint "$REPO_NAME" \ --token "$HF_TOKEN" \ --trackio-url "$TRACKIO_URL" \ --experiment-name "$EXPERIMENT_NAME" \ --dataset-repo "$TRACKIO_DATASET_REPO" # Step 17: Test the uploaded model print_step "Step 17: Testing Uploaded Model" echo "===================================" python -c " from transformers import AutoModelForCausalLM, AutoTokenizer import torch print('Loading uploaded model...') model = AutoModelForCausalLM.from_pretrained('$REPO_NAME', torch_dtype=torch.float16, device_map='auto') tokenizer = AutoTokenizer.from_pretrained('$REPO_NAME') print('Testing model generation...') prompt = 'Hello, how are you?' inputs = tokenizer(prompt, return_tensors='pt').to(model.device) outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f'Prompt: {prompt}') print(f'Response: {response}') print('✅ Model test completed successfully!') " # Step 18: Create summary report print_step "Step 18: Creating Summary Report" echo "====================================" cat > training_summary.md << EOF # SmolLM3 Fine-tuning Summary ## Configuration - **Model**: $MODEL_NAME - **Dataset**: $DATASET_NAME - **Experiment**: $EXPERIMENT_NAME - **Repository**: $REPO_NAME - **Trackio Space**: $TRACKIO_URL - **HF Dataset**: $TRACKIO_DATASET_REPO - **Training Config**: $TRAINING_CONFIG_TYPE $(if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then echo "- **Dataset Sample Size**: ${DATASET_SAMPLE_SIZE:-80000}" fi) ## Training Parameters - **Batch Size**: $BATCH_SIZE - **Gradient Accumulation**: $GRADIENT_ACCUMULATION_STEPS - **Learning Rate**: $LEARNING_RATE - **Max Epochs**: $MAX_EPOCHS - **Max Steps**: $MAX_STEPS - **Total Samples**: $TOTAL_SAMPLES - **Sequence Length**: $MAX_SEQ_LENGTH ## Results - **Model Repository**: https://huggingface.co/$REPO_NAME - **Trackio Monitoring**: $TRACKIO_URL - **Experiment Data**: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO ## Next Steps 1. Monitor training progress in your Trackio Space 2. Check the model repository on Hugging Face Hub 3. Use the model in your applications 4. Share your results with the community ## Files Created - Training configuration: \`$CONFIG_FILE\` - Dataset: \`training_dataset/\` - Model checkpoint: \`/output-checkpoint/\` - Training logs: \`training.log\` - Summary report: \`training_summary.md\` EOF print_status "Summary report saved to: training_summary.md" # Final summary echo "" print_header "🎉 End-to-End Pipeline Completed Successfully!" echo "==================================================" echo "" echo "📊 Model: https://huggingface.co/$REPO_NAME" echo "📈 Trackio: $TRACKIO_URL" echo "📋 Experiment: $EXPERIMENT_NAME" echo "📊 Dataset: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO" echo "" echo "📋 Summary report saved to: training_summary.md" echo "" echo "🚀 Next steps:" echo "1. Monitor training progress in your Trackio Space" echo "2. Check the model repository on Hugging Face Hub" echo "3. Use the model in your applications" echo "4. Share your results with the community" echo "" print_status "Pipeline completed successfully!"