Spaces:
Running
Running
add debuging and logging
Browse files
model.py
CHANGED
@@ -124,6 +124,10 @@ class SmolLM3Model:
|
|
124 |
if self.config is None:
|
125 |
raise ValueError("Config is required to get training arguments")
|
126 |
|
|
|
|
|
|
|
|
|
127 |
# Merge config with kwargs
|
128 |
training_args = {
|
129 |
"output_dir": output_dir,
|
@@ -155,8 +159,8 @@ class SmolLM3Model:
|
|
155 |
"ignore_data_skip": False,
|
156 |
"seed": 42,
|
157 |
"data_seed": 42,
|
158 |
-
"dataloader_num_workers": 4,
|
159 |
-
"max_grad_norm": 1.0,
|
160 |
"optim": self.config.optimizer,
|
161 |
"lr_scheduler_type": self.config.scheduler,
|
162 |
"warmup_ratio": 0.1,
|
@@ -168,7 +172,15 @@ class SmolLM3Model:
|
|
168 |
# Override with kwargs
|
169 |
training_args.update(kwargs)
|
170 |
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
def save_pretrained(self, path: str):
|
174 |
"""Save model and tokenizer"""
|
|
|
124 |
if self.config is None:
|
125 |
raise ValueError("Config is required to get training arguments")
|
126 |
|
127 |
+
# Debug: Print config attributes to identify the issue
|
128 |
+
logger.info(f"Config type: {type(self.config)}")
|
129 |
+
logger.info(f"Config attributes: {[attr for attr in dir(self.config) if not attr.startswith('_')]}")
|
130 |
+
|
131 |
# Merge config with kwargs
|
132 |
training_args = {
|
133 |
"output_dir": output_dir,
|
|
|
159 |
"ignore_data_skip": False,
|
160 |
"seed": 42,
|
161 |
"data_seed": 42,
|
162 |
+
"dataloader_num_workers": getattr(self.config, 'dataloader_num_workers', 4),
|
163 |
+
"max_grad_norm": getattr(self.config, 'max_grad_norm', 1.0),
|
164 |
"optim": self.config.optimizer,
|
165 |
"lr_scheduler_type": self.config.scheduler,
|
166 |
"warmup_ratio": 0.1,
|
|
|
172 |
# Override with kwargs
|
173 |
training_args.update(kwargs)
|
174 |
|
175 |
+
# Debug: Print training args before creating TrainingArguments
|
176 |
+
logger.info(f"Training arguments keys: {list(training_args.keys())}")
|
177 |
+
|
178 |
+
try:
|
179 |
+
return TrainingArguments(**training_args)
|
180 |
+
except Exception as e:
|
181 |
+
logger.error(f"Failed to create TrainingArguments: {e}")
|
182 |
+
logger.error(f"Training arguments: {training_args}")
|
183 |
+
raise
|
184 |
|
185 |
def save_pretrained(self, path: str):
|
186 |
"""Save model and tokenizer"""
|