Spaces:
Running
Running
Merge branch 'main' of https://github.com/Josephrp/smollm3_finetune
Browse files- scripts/trackio_tonic/README.md +46 -0
- scripts/trackio_tonic/app.py +1211 -0
- scripts/trackio_tonic/requirements.txt +22 -0
scripts/trackio_tonic/README.md
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Trackio Tonic
|
| 3 |
+
emoji: 🐠
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: yellow
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.38.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
license: mit
|
| 11 |
+
short_description: trackio for training monitoring
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# Trackio Experiment Tracking
|
| 15 |
+
|
| 16 |
+
A Gradio interface for experiment tracking and monitoring.
|
| 17 |
+
|
| 18 |
+
## Features
|
| 19 |
+
|
| 20 |
+
- Create and manage experiments
|
| 21 |
+
- Log training metrics and parameters
|
| 22 |
+
- View experiment details and results
|
| 23 |
+
- Update experiment status
|
| 24 |
+
|
| 25 |
+
## Usage
|
| 26 |
+
|
| 27 |
+
1. Create a new experiment using the "Create Experiment" tab
|
| 28 |
+
2. Log metrics during training using the "Log Metrics" tab
|
| 29 |
+
3. View experiment details using the "View Experiments" tab
|
| 30 |
+
4. Update experiment status using the "Update Status" tab
|
| 31 |
+
|
| 32 |
+
## Integration
|
| 33 |
+
|
| 34 |
+
To connect your training script to this Trackio Space:
|
| 35 |
+
|
| 36 |
+
```python
|
| 37 |
+
from monitoring import SmolLM3Monitor
|
| 38 |
+
|
| 39 |
+
monitor = SmolLM3Monitor(
|
| 40 |
+
experiment_name="my_experiment",
|
| 41 |
+
trackio_url="https://huggingface.co/spaces/Tonic/trackio_test_2",
|
| 42 |
+
enable_tracking=True
|
| 43 |
+
)
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
Visit: https://huggingface.co/spaces/Tonic/trackio_test_2
|
scripts/trackio_tonic/app.py
ADDED
|
@@ -0,0 +1,1211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Trackio Deployment on Hugging Face Spaces
|
| 3 |
+
A Gradio interface for experiment tracking and monitoring
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import os
|
| 8 |
+
import json
|
| 9 |
+
import logging
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
from typing import Dict, Any, Optional
|
| 12 |
+
import requests
|
| 13 |
+
import plotly.graph_objects as go
|
| 14 |
+
import plotly.express as px
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import numpy as np
|
| 17 |
+
|
| 18 |
+
# Setup logging
|
| 19 |
+
logging.basicConfig(level=logging.INFO)
|
| 20 |
+
logger = logging.getLogger(__name__)
|
| 21 |
+
|
| 22 |
+
class TrackioSpace:
|
| 23 |
+
"""Trackio deployment for Hugging Face Spaces using HF Datasets"""
|
| 24 |
+
|
| 25 |
+
def __init__(self, hf_token: Optional[str] = None, dataset_repo: Optional[str] = None):
|
| 26 |
+
self.experiments = {}
|
| 27 |
+
self.current_experiment = None
|
| 28 |
+
|
| 29 |
+
# Get dataset repository and HF token from parameters or environment variables
|
| 30 |
+
self.dataset_repo = dataset_repo or os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
|
| 31 |
+
self.hf_token = hf_token or os.environ.get('HF_TOKEN')
|
| 32 |
+
|
| 33 |
+
logger.info(f"🔧 Using dataset repository: {self.dataset_repo}")
|
| 34 |
+
|
| 35 |
+
if not self.hf_token:
|
| 36 |
+
logger.warning("⚠️ HF_TOKEN not found. Some features may not work.")
|
| 37 |
+
|
| 38 |
+
self._load_experiments()
|
| 39 |
+
|
| 40 |
+
def _load_experiments(self):
|
| 41 |
+
"""Load experiments from HF Dataset"""
|
| 42 |
+
try:
|
| 43 |
+
if self.hf_token:
|
| 44 |
+
from datasets import load_dataset
|
| 45 |
+
|
| 46 |
+
# Try to load the dataset
|
| 47 |
+
try:
|
| 48 |
+
dataset = load_dataset(self.dataset_repo, token=self.hf_token)
|
| 49 |
+
logger.info(f"✅ Loaded experiments from {self.dataset_repo}")
|
| 50 |
+
|
| 51 |
+
# Convert dataset to experiments dict
|
| 52 |
+
self.experiments = {}
|
| 53 |
+
if 'train' in dataset:
|
| 54 |
+
for row in dataset['train']:
|
| 55 |
+
exp_id = row.get('experiment_id')
|
| 56 |
+
if exp_id:
|
| 57 |
+
self.experiments[exp_id] = {
|
| 58 |
+
'id': exp_id,
|
| 59 |
+
'name': row.get('name', ''),
|
| 60 |
+
'description': row.get('description', ''),
|
| 61 |
+
'created_at': row.get('created_at', ''),
|
| 62 |
+
'status': row.get('status', 'running'),
|
| 63 |
+
'metrics': json.loads(row.get('metrics', '[]')),
|
| 64 |
+
'parameters': json.loads(row.get('parameters', '{}')),
|
| 65 |
+
'artifacts': json.loads(row.get('artifacts', '[]')),
|
| 66 |
+
'logs': json.loads(row.get('logs', '[]'))
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
logger.info(f"📊 Loaded {len(self.experiments)} experiments from dataset")
|
| 70 |
+
|
| 71 |
+
except Exception as e:
|
| 72 |
+
logger.warning(f"Failed to load from dataset: {e}")
|
| 73 |
+
# Fall back to backup data
|
| 74 |
+
self._load_backup_experiments()
|
| 75 |
+
else:
|
| 76 |
+
# No HF token, use backup data
|
| 77 |
+
self._load_backup_experiments()
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
logger.error(f"Failed to load experiments: {e}")
|
| 81 |
+
self._load_backup_experiments()
|
| 82 |
+
|
| 83 |
+
def _load_backup_experiments(self):
|
| 84 |
+
"""Load backup experiments when dataset is not available"""
|
| 85 |
+
logger.info("🔄 Loading backup experiments...")
|
| 86 |
+
|
| 87 |
+
backup_experiments = {
|
| 88 |
+
'exp_20250720_130853': {
|
| 89 |
+
'id': 'exp_20250720_130853',
|
| 90 |
+
'name': 'petite-elle-l-aime-3',
|
| 91 |
+
'description': 'SmolLM3 fine-tuning experiment',
|
| 92 |
+
'created_at': '2025-07-20T11:20:01.780908',
|
| 93 |
+
'status': 'running',
|
| 94 |
+
'metrics': [
|
| 95 |
+
{
|
| 96 |
+
'timestamp': '2025-07-20T11:20:01.780908',
|
| 97 |
+
'step': 25,
|
| 98 |
+
'metrics': {
|
| 99 |
+
'loss': 1.1659,
|
| 100 |
+
'grad_norm': 10.3125,
|
| 101 |
+
'learning_rate': 7e-08,
|
| 102 |
+
'num_tokens': 1642080.0,
|
| 103 |
+
'mean_token_accuracy': 0.75923578992486,
|
| 104 |
+
'epoch': 0.004851130919895701
|
| 105 |
+
}
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
'timestamp': '2025-07-20T11:26:39.042155',
|
| 109 |
+
'step': 50,
|
| 110 |
+
'metrics': {
|
| 111 |
+
'loss': 1.165,
|
| 112 |
+
'grad_norm': 10.75,
|
| 113 |
+
'learning_rate': 1.4291666666666667e-07,
|
| 114 |
+
'num_tokens': 3324682.0,
|
| 115 |
+
'mean_token_accuracy': 0.7577659255266189,
|
| 116 |
+
'epoch': 0.009702261839791402
|
| 117 |
+
}
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
'timestamp': '2025-07-20T11:33:16.203045',
|
| 121 |
+
'step': 75,
|
| 122 |
+
'metrics': {
|
| 123 |
+
'loss': 1.1639,
|
| 124 |
+
'grad_norm': 10.6875,
|
| 125 |
+
'learning_rate': 2.1583333333333334e-07,
|
| 126 |
+
'num_tokens': 4987941.0,
|
| 127 |
+
'mean_token_accuracy': 0.7581205774843692,
|
| 128 |
+
'epoch': 0.014553392759687101
|
| 129 |
+
}
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
'timestamp': '2025-07-20T11:39:53.453917',
|
| 133 |
+
'step': 100,
|
| 134 |
+
'metrics': {
|
| 135 |
+
'loss': 1.1528,
|
| 136 |
+
'grad_norm': 10.75,
|
| 137 |
+
'learning_rate': 2.8875e-07,
|
| 138 |
+
'num_tokens': 6630190.0,
|
| 139 |
+
'mean_token_accuracy': 0.7614579878747463,
|
| 140 |
+
'epoch': 0.019404523679582803
|
| 141 |
+
}
|
| 142 |
+
}
|
| 143 |
+
],
|
| 144 |
+
'parameters': {
|
| 145 |
+
'model_name': 'HuggingFaceTB/SmolLM3-3B',
|
| 146 |
+
'max_seq_length': 12288,
|
| 147 |
+
'use_flash_attention': True,
|
| 148 |
+
'use_gradient_checkpointing': False,
|
| 149 |
+
'batch_size': 8,
|
| 150 |
+
'gradient_accumulation_steps': 16,
|
| 151 |
+
'learning_rate': 3.5e-06,
|
| 152 |
+
'weight_decay': 0.01,
|
| 153 |
+
'warmup_steps': 1200,
|
| 154 |
+
'max_iters': 18000,
|
| 155 |
+
'eval_interval': 1000,
|
| 156 |
+
'log_interval': 25,
|
| 157 |
+
'save_interval': 2000,
|
| 158 |
+
'optimizer': 'adamw_torch',
|
| 159 |
+
'beta1': 0.9,
|
| 160 |
+
'beta2': 0.999,
|
| 161 |
+
'eps': 1e-08,
|
| 162 |
+
'scheduler': 'cosine',
|
| 163 |
+
'min_lr': 3.5e-07,
|
| 164 |
+
'fp16': False,
|
| 165 |
+
'bf16': True,
|
| 166 |
+
'ddp_backend': 'nccl',
|
| 167 |
+
'ddp_find_unused_parameters': False,
|
| 168 |
+
'save_steps': 2000,
|
| 169 |
+
'eval_steps': 1000,
|
| 170 |
+
'logging_steps': 25,
|
| 171 |
+
'save_total_limit': 5,
|
| 172 |
+
'eval_strategy': 'steps',
|
| 173 |
+
'metric_for_best_model': 'eval_loss',
|
| 174 |
+
'greater_is_better': False,
|
| 175 |
+
'load_best_model_at_end': True,
|
| 176 |
+
'data_dir': None,
|
| 177 |
+
'train_file': None,
|
| 178 |
+
'validation_file': None,
|
| 179 |
+
'test_file': None,
|
| 180 |
+
'use_chat_template': True,
|
| 181 |
+
'chat_template_kwargs': {'add_generation_prompt': True, 'no_think_system_message': True},
|
| 182 |
+
'enable_tracking': True,
|
| 183 |
+
'trackio_url': 'https://tonic-test-trackio-test.hf.space',
|
| 184 |
+
'trackio_token': None,
|
| 185 |
+
'log_artifacts': True,
|
| 186 |
+
'log_metrics': True,
|
| 187 |
+
'log_config': True,
|
| 188 |
+
'experiment_name': 'petite-elle-l-aime-3',
|
| 189 |
+
'dataset_name': 'legmlai/openhermes-fr',
|
| 190 |
+
'dataset_split': 'train',
|
| 191 |
+
'input_field': 'prompt',
|
| 192 |
+
'target_field': 'accepted_completion',
|
| 193 |
+
'filter_bad_entries': True,
|
| 194 |
+
'bad_entry_field': 'bad_entry',
|
| 195 |
+
'packing': False,
|
| 196 |
+
'max_prompt_length': 12288,
|
| 197 |
+
'max_completion_length': 8192,
|
| 198 |
+
'truncation': True,
|
| 199 |
+
'dataloader_num_workers': 10,
|
| 200 |
+
'dataloader_pin_memory': True,
|
| 201 |
+
'dataloader_prefetch_factor': 3,
|
| 202 |
+
'max_grad_norm': 1.0,
|
| 203 |
+
'group_by_length': True
|
| 204 |
+
},
|
| 205 |
+
'artifacts': [],
|
| 206 |
+
'logs': []
|
| 207 |
+
},
|
| 208 |
+
'exp_20250720_134319': {
|
| 209 |
+
'id': 'exp_20250720_134319',
|
| 210 |
+
'name': 'petite-elle-l-aime-3-1',
|
| 211 |
+
'description': 'SmolLM3 fine-tuning experiment',
|
| 212 |
+
'created_at': '2025-07-20T11:54:31.993219',
|
| 213 |
+
'status': 'running',
|
| 214 |
+
'metrics': [
|
| 215 |
+
{
|
| 216 |
+
'timestamp': '2025-07-20T11:54:31.993219',
|
| 217 |
+
'step': 25,
|
| 218 |
+
'metrics': {
|
| 219 |
+
'loss': 1.166,
|
| 220 |
+
'grad_norm': 10.375,
|
| 221 |
+
'learning_rate': 7e-08,
|
| 222 |
+
'num_tokens': 1642080.0,
|
| 223 |
+
'mean_token_accuracy': 0.7590958896279335,
|
| 224 |
+
'epoch': 0.004851130919895701
|
| 225 |
+
}
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
'timestamp': '2025-07-20T11:54:33.589487',
|
| 229 |
+
'step': 25,
|
| 230 |
+
'metrics': {
|
| 231 |
+
'gpu_0_memory_allocated': 17.202261447906494,
|
| 232 |
+
'gpu_0_memory_reserved': 75.474609375,
|
| 233 |
+
'gpu_0_utilization': 0,
|
| 234 |
+
'cpu_percent': 2.7,
|
| 235 |
+
'memory_percent': 10.1
|
| 236 |
+
}
|
| 237 |
+
}
|
| 238 |
+
],
|
| 239 |
+
'parameters': {
|
| 240 |
+
'model_name': 'HuggingFaceTB/SmolLM3-3B',
|
| 241 |
+
'max_seq_length': 12288,
|
| 242 |
+
'use_flash_attention': True,
|
| 243 |
+
'use_gradient_checkpointing': False,
|
| 244 |
+
'batch_size': 8,
|
| 245 |
+
'gradient_accumulation_steps': 16,
|
| 246 |
+
'learning_rate': 3.5e-06,
|
| 247 |
+
'weight_decay': 0.01,
|
| 248 |
+
'warmup_steps': 1200,
|
| 249 |
+
'max_iters': 18000,
|
| 250 |
+
'eval_interval': 1000,
|
| 251 |
+
'log_interval': 25,
|
| 252 |
+
'save_interval': 2000,
|
| 253 |
+
'optimizer': 'adamw_torch',
|
| 254 |
+
'beta1': 0.9,
|
| 255 |
+
'beta2': 0.999,
|
| 256 |
+
'eps': 1e-08,
|
| 257 |
+
'scheduler': 'cosine',
|
| 258 |
+
'min_lr': 3.5e-07,
|
| 259 |
+
'fp16': False,
|
| 260 |
+
'bf16': True,
|
| 261 |
+
'ddp_backend': 'nccl',
|
| 262 |
+
'ddp_find_unused_parameters': False,
|
| 263 |
+
'save_steps': 2000,
|
| 264 |
+
'eval_steps': 1000,
|
| 265 |
+
'logging_steps': 25,
|
| 266 |
+
'save_total_limit': 5,
|
| 267 |
+
'eval_strategy': 'steps',
|
| 268 |
+
'metric_for_best_model': 'eval_loss',
|
| 269 |
+
'greater_is_better': False,
|
| 270 |
+
'load_best_model_at_end': True,
|
| 271 |
+
'data_dir': None,
|
| 272 |
+
'train_file': None,
|
| 273 |
+
'validation_file': None,
|
| 274 |
+
'test_file': None,
|
| 275 |
+
'use_chat_template': True,
|
| 276 |
+
'chat_template_kwargs': {'add_generation_prompt': True, 'no_think_system_message': True},
|
| 277 |
+
'enable_tracking': True,
|
| 278 |
+
'trackio_url': 'https://tonic-test-trackio-test.hf.space',
|
| 279 |
+
'trackio_token': None,
|
| 280 |
+
'log_artifacts': True,
|
| 281 |
+
'log_metrics': True,
|
| 282 |
+
'log_config': True,
|
| 283 |
+
'experiment_name': 'petite-elle-l-aime-3-1',
|
| 284 |
+
'dataset_name': 'legmlai/openhermes-fr',
|
| 285 |
+
'dataset_split': 'train',
|
| 286 |
+
'input_field': 'prompt',
|
| 287 |
+
'target_field': 'accepted_completion',
|
| 288 |
+
'filter_bad_entries': True,
|
| 289 |
+
'bad_entry_field': 'bad_entry',
|
| 290 |
+
'packing': False,
|
| 291 |
+
'max_prompt_length': 12288,
|
| 292 |
+
'max_completion_length': 8192,
|
| 293 |
+
'truncation': True,
|
| 294 |
+
'dataloader_num_workers': 10,
|
| 295 |
+
'dataloader_pin_memory': True,
|
| 296 |
+
'dataloader_prefetch_factor': 3,
|
| 297 |
+
'max_grad_norm': 1.0,
|
| 298 |
+
'group_by_length': True
|
| 299 |
+
},
|
| 300 |
+
'artifacts': [],
|
| 301 |
+
'logs': []
|
| 302 |
+
}
|
| 303 |
+
}
|
| 304 |
+
|
| 305 |
+
self.experiments = backup_experiments
|
| 306 |
+
self.current_experiment = 'exp_20250720_134319'
|
| 307 |
+
logger.info(f"✅ Loaded {len(backup_experiments)} backup experiments")
|
| 308 |
+
|
| 309 |
+
def _save_experiments(self):
|
| 310 |
+
"""Save experiments to HF Dataset"""
|
| 311 |
+
try:
|
| 312 |
+
if self.hf_token:
|
| 313 |
+
from datasets import Dataset
|
| 314 |
+
from huggingface_hub import HfApi
|
| 315 |
+
|
| 316 |
+
# Convert experiments to dataset format
|
| 317 |
+
dataset_data = []
|
| 318 |
+
for exp_id, exp_data in self.experiments.items():
|
| 319 |
+
dataset_data.append({
|
| 320 |
+
'experiment_id': exp_id,
|
| 321 |
+
'name': exp_data.get('name', ''),
|
| 322 |
+
'description': exp_data.get('description', ''),
|
| 323 |
+
'created_at': exp_data.get('created_at', ''),
|
| 324 |
+
'status': exp_data.get('status', 'running'),
|
| 325 |
+
'metrics': json.dumps(exp_data.get('metrics', [])),
|
| 326 |
+
'parameters': json.dumps(exp_data.get('parameters', {})),
|
| 327 |
+
'artifacts': json.dumps(exp_data.get('artifacts', [])),
|
| 328 |
+
'logs': json.dumps(exp_data.get('logs', [])),
|
| 329 |
+
'last_updated': datetime.now().isoformat()
|
| 330 |
+
})
|
| 331 |
+
|
| 332 |
+
# Create dataset
|
| 333 |
+
dataset = Dataset.from_list(dataset_data)
|
| 334 |
+
|
| 335 |
+
# Push to HF Hub
|
| 336 |
+
api = HfApi(token=self.hf_token)
|
| 337 |
+
dataset.push_to_hub(
|
| 338 |
+
self.dataset_repo,
|
| 339 |
+
token=self.hf_token,
|
| 340 |
+
private=True # Make it private for security
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
logger.info(f"✅ Saved {len(dataset_data)} experiments to {self.dataset_repo}")
|
| 344 |
+
|
| 345 |
+
else:
|
| 346 |
+
logger.warning("⚠️ No HF_TOKEN available, experiments not saved to dataset")
|
| 347 |
+
|
| 348 |
+
except Exception as e:
|
| 349 |
+
logger.error(f"Failed to save experiments to dataset: {e}")
|
| 350 |
+
# Fall back to local file for backup
|
| 351 |
+
try:
|
| 352 |
+
data = {
|
| 353 |
+
'experiments': self.experiments,
|
| 354 |
+
'current_experiment': self.current_experiment,
|
| 355 |
+
'last_updated': datetime.now().isoformat()
|
| 356 |
+
}
|
| 357 |
+
with open("trackio_experiments_backup.json", 'w') as f:
|
| 358 |
+
json.dump(data, f, indent=2, default=str)
|
| 359 |
+
logger.info("✅ Saved backup to local file")
|
| 360 |
+
except Exception as backup_e:
|
| 361 |
+
logger.error(f"Failed to save backup: {backup_e}")
|
| 362 |
+
|
| 363 |
+
def create_experiment(self, name: str, description: str = "") -> Dict[str, Any]:
|
| 364 |
+
"""Create a new experiment"""
|
| 365 |
+
experiment_id = f"exp_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
| 366 |
+
|
| 367 |
+
experiment = {
|
| 368 |
+
'id': experiment_id,
|
| 369 |
+
'name': name,
|
| 370 |
+
'description': description,
|
| 371 |
+
'created_at': datetime.now().isoformat(),
|
| 372 |
+
'status': 'running',
|
| 373 |
+
'metrics': [],
|
| 374 |
+
'parameters': {},
|
| 375 |
+
'artifacts': [],
|
| 376 |
+
'logs': []
|
| 377 |
+
}
|
| 378 |
+
|
| 379 |
+
self.experiments[experiment_id] = experiment
|
| 380 |
+
self.current_experiment = experiment_id
|
| 381 |
+
self._save_experiments()
|
| 382 |
+
|
| 383 |
+
logger.info(f"Created experiment: {experiment_id} - {name}")
|
| 384 |
+
return experiment
|
| 385 |
+
|
| 386 |
+
def log_metrics(self, experiment_id: str, metrics: Dict[str, Any], step: Optional[int] = None):
|
| 387 |
+
"""Log metrics for an experiment"""
|
| 388 |
+
if experiment_id not in self.experiments:
|
| 389 |
+
raise ValueError(f"Experiment {experiment_id} not found")
|
| 390 |
+
|
| 391 |
+
metric_entry = {
|
| 392 |
+
'timestamp': datetime.now().isoformat(),
|
| 393 |
+
'step': step,
|
| 394 |
+
'metrics': metrics
|
| 395 |
+
}
|
| 396 |
+
|
| 397 |
+
self.experiments[experiment_id]['metrics'].append(metric_entry)
|
| 398 |
+
self._save_experiments()
|
| 399 |
+
logger.info(f"Logged metrics for experiment {experiment_id}: {metrics}")
|
| 400 |
+
|
| 401 |
+
def log_parameters(self, experiment_id: str, parameters: Dict[str, Any]):
|
| 402 |
+
"""Log parameters for an experiment"""
|
| 403 |
+
if experiment_id not in self.experiments:
|
| 404 |
+
raise ValueError(f"Experiment {experiment_id} not found")
|
| 405 |
+
|
| 406 |
+
self.experiments[experiment_id]['parameters'].update(parameters)
|
| 407 |
+
self._save_experiments()
|
| 408 |
+
logger.info(f"Logged parameters for experiment {experiment_id}: {parameters}")
|
| 409 |
+
|
| 410 |
+
def log_artifact(self, experiment_id: str, artifact_name: str, artifact_data: str):
|
| 411 |
+
"""Log an artifact for an experiment"""
|
| 412 |
+
if experiment_id not in self.experiments:
|
| 413 |
+
raise ValueError(f"Experiment {experiment_id} not found")
|
| 414 |
+
|
| 415 |
+
artifact_entry = {
|
| 416 |
+
'name': artifact_name,
|
| 417 |
+
'timestamp': datetime.now().isoformat(),
|
| 418 |
+
'data': artifact_data
|
| 419 |
+
}
|
| 420 |
+
|
| 421 |
+
self.experiments[experiment_id]['artifacts'].append(artifact_entry)
|
| 422 |
+
self._save_experiments()
|
| 423 |
+
logger.info(f"Logged artifact for experiment {experiment_id}: {artifact_name}")
|
| 424 |
+
|
| 425 |
+
def get_experiment(self, experiment_id: str) -> Optional[Dict[str, Any]]:
|
| 426 |
+
"""Get experiment details"""
|
| 427 |
+
return self.experiments.get(experiment_id)
|
| 428 |
+
|
| 429 |
+
def list_experiments(self) -> Dict[str, Any]:
|
| 430 |
+
"""List all experiments"""
|
| 431 |
+
return {
|
| 432 |
+
'experiments': list(self.experiments.keys()),
|
| 433 |
+
'current_experiment': self.current_experiment,
|
| 434 |
+
'total_experiments': len(self.experiments)
|
| 435 |
+
}
|
| 436 |
+
|
| 437 |
+
def update_experiment_status(self, experiment_id: str, status: str):
|
| 438 |
+
"""Update experiment status"""
|
| 439 |
+
if experiment_id in self.experiments:
|
| 440 |
+
self.experiments[experiment_id]['status'] = status
|
| 441 |
+
self._save_experiments()
|
| 442 |
+
logger.info(f"Updated experiment {experiment_id} status to {status}")
|
| 443 |
+
|
| 444 |
+
def get_metrics_dataframe(self, experiment_id: str) -> pd.DataFrame:
|
| 445 |
+
"""Get metrics as a pandas DataFrame for plotting"""
|
| 446 |
+
if experiment_id not in self.experiments:
|
| 447 |
+
return pd.DataFrame()
|
| 448 |
+
|
| 449 |
+
experiment = self.experiments[experiment_id]
|
| 450 |
+
if not experiment['metrics']:
|
| 451 |
+
return pd.DataFrame()
|
| 452 |
+
|
| 453 |
+
# Convert metrics to DataFrame
|
| 454 |
+
data = []
|
| 455 |
+
for metric_entry in experiment['metrics']:
|
| 456 |
+
step = metric_entry.get('step', 0)
|
| 457 |
+
timestamp = metric_entry.get('timestamp', '')
|
| 458 |
+
metrics = metric_entry.get('metrics', {})
|
| 459 |
+
|
| 460 |
+
row = {'step': step, 'timestamp': timestamp}
|
| 461 |
+
row.update(metrics)
|
| 462 |
+
data.append(row)
|
| 463 |
+
|
| 464 |
+
return pd.DataFrame(data)
|
| 465 |
+
|
| 466 |
+
# Global instance
|
| 467 |
+
trackio_space = TrackioSpace()
|
| 468 |
+
|
| 469 |
+
def update_trackio_config(hf_token: str, dataset_repo: str) -> str:
|
| 470 |
+
"""Update TrackioSpace configuration with new HF token and dataset repository"""
|
| 471 |
+
global trackio_space
|
| 472 |
+
|
| 473 |
+
try:
|
| 474 |
+
# Create new instance with updated configuration
|
| 475 |
+
trackio_space = TrackioSpace(hf_token=hf_token if hf_token.strip() else None,
|
| 476 |
+
dataset_repo=dataset_repo if dataset_repo.strip() else None)
|
| 477 |
+
|
| 478 |
+
# Reload experiments with new configuration
|
| 479 |
+
trackio_space._load_experiments()
|
| 480 |
+
|
| 481 |
+
return f"✅ Configuration updated successfully!\n📊 Dataset: {trackio_space.dataset_repo}\n🔑 HF Token: {'Set' if trackio_space.hf_token else 'Not set'}\n📈 Loaded {len(trackio_space.experiments)} experiments"
|
| 482 |
+
|
| 483 |
+
except Exception as e:
|
| 484 |
+
return f"❌ Failed to update configuration: {str(e)}"
|
| 485 |
+
|
| 486 |
+
def test_dataset_connection(hf_token: str, dataset_repo: str) -> str:
|
| 487 |
+
"""Test connection to HF Dataset repository"""
|
| 488 |
+
try:
|
| 489 |
+
if not hf_token.strip():
|
| 490 |
+
return "❌ Please provide a Hugging Face token"
|
| 491 |
+
|
| 492 |
+
if not dataset_repo.strip():
|
| 493 |
+
return "❌ Please provide a dataset repository"
|
| 494 |
+
|
| 495 |
+
from datasets import load_dataset
|
| 496 |
+
|
| 497 |
+
# Test loading the dataset
|
| 498 |
+
dataset = load_dataset(dataset_repo, token=hf_token)
|
| 499 |
+
|
| 500 |
+
# Count experiments
|
| 501 |
+
experiment_count = len(dataset['train']) if 'train' in dataset else 0
|
| 502 |
+
|
| 503 |
+
return f"✅ Connection successful!\n📊 Dataset: {dataset_repo}\n📈 Found {experiment_count} experiments\n🔗 Dataset URL: https://huggingface.co/datasets/{dataset_repo}"
|
| 504 |
+
|
| 505 |
+
except Exception as e:
|
| 506 |
+
return f"❌ Connection failed: {str(e)}\n\n💡 Troubleshooting:\n1. Check your HF token is correct\n2. Verify the dataset repository exists\n3. Ensure your token has read access to the dataset"
|
| 507 |
+
|
| 508 |
+
def create_dataset_repository(hf_token: str, dataset_repo: str) -> str:
|
| 509 |
+
"""Create HF Dataset repository if it doesn't exist"""
|
| 510 |
+
try:
|
| 511 |
+
if not hf_token.strip():
|
| 512 |
+
return "❌ Please provide a Hugging Face token"
|
| 513 |
+
|
| 514 |
+
if not dataset_repo.strip():
|
| 515 |
+
return "❌ Please provide a dataset repository"
|
| 516 |
+
|
| 517 |
+
from datasets import Dataset
|
| 518 |
+
from huggingface_hub import HfApi
|
| 519 |
+
|
| 520 |
+
# Parse username and dataset name
|
| 521 |
+
if '/' not in dataset_repo:
|
| 522 |
+
return "❌ Dataset repository must be in format: username/dataset-name"
|
| 523 |
+
|
| 524 |
+
username, dataset_name = dataset_repo.split('/', 1)
|
| 525 |
+
|
| 526 |
+
# Create API client
|
| 527 |
+
api = HfApi(token=hf_token)
|
| 528 |
+
|
| 529 |
+
# Check if dataset exists
|
| 530 |
+
try:
|
| 531 |
+
api.dataset_info(dataset_repo)
|
| 532 |
+
return f"✅ Dataset {dataset_repo} already exists!"
|
| 533 |
+
except:
|
| 534 |
+
# Dataset doesn't exist, create it
|
| 535 |
+
pass
|
| 536 |
+
|
| 537 |
+
# Create empty dataset
|
| 538 |
+
empty_dataset = Dataset.from_dict({
|
| 539 |
+
'experiment_id': [],
|
| 540 |
+
'name': [],
|
| 541 |
+
'description': [],
|
| 542 |
+
'created_at': [],
|
| 543 |
+
'status': [],
|
| 544 |
+
'metrics': [],
|
| 545 |
+
'parameters': [],
|
| 546 |
+
'artifacts': [],
|
| 547 |
+
'logs': [],
|
| 548 |
+
'last_updated': []
|
| 549 |
+
})
|
| 550 |
+
|
| 551 |
+
# Push to hub
|
| 552 |
+
empty_dataset.push_to_hub(
|
| 553 |
+
dataset_repo,
|
| 554 |
+
token=hf_token,
|
| 555 |
+
private=True
|
| 556 |
+
)
|
| 557 |
+
|
| 558 |
+
return f"✅ Dataset {dataset_repo} created successfully!\n🔗 View at: https://huggingface.co/datasets/{dataset_repo}\n📊 Ready to store experiments"
|
| 559 |
+
|
| 560 |
+
except Exception as e:
|
| 561 |
+
return f"❌ Failed to create dataset: {str(e)}\n\n💡 Troubleshooting:\n1. Check your HF token has write permissions\n2. Verify the username in the repository name\n3. Ensure the dataset name is valid"
|
| 562 |
+
|
| 563 |
+
# Initialize API client for remote data
|
| 564 |
+
api_client = None
|
| 565 |
+
try:
|
| 566 |
+
from trackio_api_client import TrackioAPIClient
|
| 567 |
+
api_client = TrackioAPIClient("https://tonic-test-trackio-test.hf.space")
|
| 568 |
+
logger.info("✅ API client initialized for remote data access")
|
| 569 |
+
except ImportError:
|
| 570 |
+
logger.warning("⚠️ API client not available, using local data only")
|
| 571 |
+
|
| 572 |
+
# Add Hugging Face Spaces compatibility
|
| 573 |
+
def is_huggingface_spaces():
|
| 574 |
+
"""Check if running on Hugging Face Spaces"""
|
| 575 |
+
return os.environ.get('SPACE_ID') is not None
|
| 576 |
+
|
| 577 |
+
def get_persistent_data_path():
|
| 578 |
+
"""Get a persistent data path for Hugging Face Spaces"""
|
| 579 |
+
if is_huggingface_spaces():
|
| 580 |
+
# Use a path that might persist better on HF Spaces
|
| 581 |
+
return "/tmp/trackio_experiments.json"
|
| 582 |
+
else:
|
| 583 |
+
return "trackio_experiments.json"
|
| 584 |
+
|
| 585 |
+
# Override the data file path for HF Spaces
|
| 586 |
+
if is_huggingface_spaces():
|
| 587 |
+
logger.info("🚀 Running on Hugging Face Spaces - using persistent storage")
|
| 588 |
+
trackio_space.data_file = get_persistent_data_path()
|
| 589 |
+
|
| 590 |
+
def get_remote_experiment_data(experiment_id: str) -> Dict[str, Any]:
|
| 591 |
+
"""Get experiment data from remote API"""
|
| 592 |
+
if api_client is None:
|
| 593 |
+
return None
|
| 594 |
+
|
| 595 |
+
try:
|
| 596 |
+
# Get experiment details from API
|
| 597 |
+
details_result = api_client.get_experiment_details(experiment_id)
|
| 598 |
+
if "success" in details_result:
|
| 599 |
+
return {"remote": True, "data": details_result["data"]}
|
| 600 |
+
else:
|
| 601 |
+
logger.warning(f"Failed to get remote data for {experiment_id}: {details_result}")
|
| 602 |
+
return None
|
| 603 |
+
except Exception as e:
|
| 604 |
+
logger.error(f"Error getting remote data: {e}")
|
| 605 |
+
return None
|
| 606 |
+
|
| 607 |
+
def parse_remote_metrics_data(experiment_details: str) -> pd.DataFrame:
|
| 608 |
+
"""Parse metrics data from remote experiment details"""
|
| 609 |
+
try:
|
| 610 |
+
# Look for metrics in the experiment details
|
| 611 |
+
lines = experiment_details.split('\n')
|
| 612 |
+
metrics_data = []
|
| 613 |
+
|
| 614 |
+
for line in lines:
|
| 615 |
+
if 'Step:' in line and 'Metrics:' in line:
|
| 616 |
+
# Extract step and metrics from the line
|
| 617 |
+
try:
|
| 618 |
+
# Parse step number
|
| 619 |
+
step_part = line.split('Step:')[1].split('Metrics:')[0].strip()
|
| 620 |
+
step = int(step_part)
|
| 621 |
+
|
| 622 |
+
# Parse metrics JSON
|
| 623 |
+
metrics_part = line.split('Metrics:')[1].strip()
|
| 624 |
+
metrics = json.loads(metrics_part)
|
| 625 |
+
|
| 626 |
+
# Add timestamp
|
| 627 |
+
row = {'step': step, 'timestamp': datetime.now().isoformat()}
|
| 628 |
+
row.update(metrics)
|
| 629 |
+
metrics_data.append(row)
|
| 630 |
+
|
| 631 |
+
except (ValueError, json.JSONDecodeError) as e:
|
| 632 |
+
logger.warning(f"Failed to parse metrics line: {line} - {e}")
|
| 633 |
+
continue
|
| 634 |
+
|
| 635 |
+
if metrics_data:
|
| 636 |
+
return pd.DataFrame(metrics_data)
|
| 637 |
+
else:
|
| 638 |
+
return pd.DataFrame()
|
| 639 |
+
|
| 640 |
+
except Exception as e:
|
| 641 |
+
logger.error(f"Error parsing remote metrics: {e}")
|
| 642 |
+
return pd.DataFrame()
|
| 643 |
+
|
| 644 |
+
def get_metrics_dataframe(experiment_id: str) -> pd.DataFrame:
|
| 645 |
+
"""Get metrics as a pandas DataFrame for plotting - tries remote first, then local"""
|
| 646 |
+
# Try to get remote data first
|
| 647 |
+
remote_data = get_remote_experiment_data(experiment_id)
|
| 648 |
+
if remote_data:
|
| 649 |
+
logger.info(f"Using remote data for {experiment_id}")
|
| 650 |
+
# Parse the remote experiment details to extract metrics
|
| 651 |
+
df = parse_remote_metrics_data(remote_data["data"])
|
| 652 |
+
if not df.empty:
|
| 653 |
+
logger.info(f"Found {len(df)} metrics entries from remote data")
|
| 654 |
+
return df
|
| 655 |
+
else:
|
| 656 |
+
logger.warning(f"No metrics found in remote data for {experiment_id}")
|
| 657 |
+
|
| 658 |
+
# Fall back to local data
|
| 659 |
+
logger.info(f"Using local data for {experiment_id}")
|
| 660 |
+
return trackio_space.get_metrics_dataframe(experiment_id)
|
| 661 |
+
|
| 662 |
+
def create_experiment_interface(name: str, description: str) -> str:
|
| 663 |
+
"""Create a new experiment"""
|
| 664 |
+
try:
|
| 665 |
+
experiment = trackio_space.create_experiment(name, description)
|
| 666 |
+
return f"✅ Experiment created successfully!\nID: {experiment['id']}\nName: {experiment['name']}\nStatus: {experiment['status']}"
|
| 667 |
+
except Exception as e:
|
| 668 |
+
return f"❌ Error creating experiment: {str(e)}"
|
| 669 |
+
|
| 670 |
+
def log_metrics_interface(experiment_id: str, metrics_json: str, step: str) -> str:
|
| 671 |
+
"""Log metrics for an experiment"""
|
| 672 |
+
try:
|
| 673 |
+
metrics = json.loads(metrics_json)
|
| 674 |
+
step_int = int(step) if step else None
|
| 675 |
+
trackio_space.log_metrics(experiment_id, metrics, step_int)
|
| 676 |
+
return f"✅ Metrics logged successfully for experiment {experiment_id}\nStep: {step_int}\nMetrics: {json.dumps(metrics, indent=2)}"
|
| 677 |
+
except Exception as e:
|
| 678 |
+
return f"❌ Error logging metrics: {str(e)}"
|
| 679 |
+
|
| 680 |
+
def log_parameters_interface(experiment_id: str, parameters_json: str) -> str:
|
| 681 |
+
"""Log parameters for an experiment"""
|
| 682 |
+
try:
|
| 683 |
+
parameters = json.loads(parameters_json)
|
| 684 |
+
trackio_space.log_parameters(experiment_id, parameters)
|
| 685 |
+
return f"✅ Parameters logged successfully for experiment {experiment_id}\nParameters: {json.dumps(parameters, indent=2)}"
|
| 686 |
+
except Exception as e:
|
| 687 |
+
return f"❌ Error logging parameters: {str(e)}"
|
| 688 |
+
|
| 689 |
+
def get_experiment_details(experiment_id: str) -> str:
|
| 690 |
+
"""Get experiment details"""
|
| 691 |
+
try:
|
| 692 |
+
experiment = trackio_space.get_experiment(experiment_id)
|
| 693 |
+
if experiment:
|
| 694 |
+
# Format the output nicely
|
| 695 |
+
details = f"""
|
| 696 |
+
📊 EXPERIMENT DETAILS
|
| 697 |
+
====================
|
| 698 |
+
ID: {experiment['id']}
|
| 699 |
+
Name: {experiment['name']}
|
| 700 |
+
Description: {experiment['description']}
|
| 701 |
+
Status: {experiment['status']}
|
| 702 |
+
Created: {experiment['created_at']}
|
| 703 |
+
|
| 704 |
+
📈 METRICS COUNT: {len(experiment['metrics'])}
|
| 705 |
+
📋 PARAMETERS COUNT: {len(experiment['parameters'])}
|
| 706 |
+
📦 ARTIFACTS COUNT: {len(experiment['artifacts'])}
|
| 707 |
+
|
| 708 |
+
🔧 PARAMETERS:
|
| 709 |
+
{json.dumps(experiment['parameters'], indent=2)}
|
| 710 |
+
|
| 711 |
+
📊 LATEST METRICS:
|
| 712 |
+
"""
|
| 713 |
+
if experiment['metrics']:
|
| 714 |
+
latest_metrics = experiment['metrics'][-1]
|
| 715 |
+
details += f"Step: {latest_metrics.get('step', 'N/A')}\n"
|
| 716 |
+
details += f"Timestamp: {latest_metrics.get('timestamp', 'N/A')}\n"
|
| 717 |
+
details += f"Metrics: {json.dumps(latest_metrics.get('metrics', {}), indent=2)}"
|
| 718 |
+
else:
|
| 719 |
+
details += "No metrics logged yet."
|
| 720 |
+
|
| 721 |
+
return details
|
| 722 |
+
else:
|
| 723 |
+
return f"❌ Experiment {experiment_id} not found"
|
| 724 |
+
except Exception as e:
|
| 725 |
+
return f"❌ Error getting experiment details: {str(e)}"
|
| 726 |
+
|
| 727 |
+
def list_experiments_interface() -> str:
|
| 728 |
+
"""List all experiments with details"""
|
| 729 |
+
try:
|
| 730 |
+
experiments_info = trackio_space.list_experiments()
|
| 731 |
+
experiments = trackio_space.experiments
|
| 732 |
+
|
| 733 |
+
if not experiments:
|
| 734 |
+
return "📭 No experiments found. Create one first!"
|
| 735 |
+
|
| 736 |
+
result = f"📋 EXPERIMENTS OVERVIEW\n{'='*50}\n"
|
| 737 |
+
result += f"Total Experiments: {len(experiments)}\n"
|
| 738 |
+
result += f"Current Experiment: {experiments_info['current_experiment']}\n\n"
|
| 739 |
+
|
| 740 |
+
for exp_id, exp_data in experiments.items():
|
| 741 |
+
status_emoji = {
|
| 742 |
+
'running': '🟢',
|
| 743 |
+
'completed': '✅',
|
| 744 |
+
'failed': '❌',
|
| 745 |
+
'paused': '⏸️'
|
| 746 |
+
}.get(exp_data['status'], '❓')
|
| 747 |
+
|
| 748 |
+
result += f"{status_emoji} {exp_id}\n"
|
| 749 |
+
result += f" Name: {exp_data['name']}\n"
|
| 750 |
+
result += f" Status: {exp_data['status']}\n"
|
| 751 |
+
result += f" Created: {exp_data['created_at']}\n"
|
| 752 |
+
result += f" Metrics: {len(exp_data['metrics'])} entries\n"
|
| 753 |
+
result += f" Parameters: {len(exp_data['parameters'])} entries\n"
|
| 754 |
+
result += f" Artifacts: {len(exp_data['artifacts'])} entries\n\n"
|
| 755 |
+
|
| 756 |
+
return result
|
| 757 |
+
except Exception as e:
|
| 758 |
+
return f"❌ Error listing experiments: {str(e)}"
|
| 759 |
+
|
| 760 |
+
def update_experiment_status_interface(experiment_id: str, status: str) -> str:
|
| 761 |
+
"""Update experiment status"""
|
| 762 |
+
try:
|
| 763 |
+
trackio_space.update_experiment_status(experiment_id, status)
|
| 764 |
+
return f"✅ Experiment {experiment_id} status updated to {status}"
|
| 765 |
+
except Exception as e:
|
| 766 |
+
return f"❌ Error updating experiment status: {str(e)}"
|
| 767 |
+
|
| 768 |
+
def create_metrics_plot(experiment_id: str, metric_name: str = "loss") -> go.Figure:
|
| 769 |
+
"""Create a plot for a specific metric"""
|
| 770 |
+
try:
|
| 771 |
+
df = get_metrics_dataframe(experiment_id)
|
| 772 |
+
if df.empty:
|
| 773 |
+
# Return empty plot
|
| 774 |
+
fig = go.Figure()
|
| 775 |
+
fig.add_annotation(
|
| 776 |
+
text="No metrics data available",
|
| 777 |
+
xref="paper", yref="paper",
|
| 778 |
+
x=0.5, y=0.5, showarrow=False
|
| 779 |
+
)
|
| 780 |
+
return fig
|
| 781 |
+
|
| 782 |
+
if metric_name not in df.columns:
|
| 783 |
+
# Show available metrics
|
| 784 |
+
available_metrics = [col for col in df.columns if col not in ['step', 'timestamp']]
|
| 785 |
+
fig = go.Figure()
|
| 786 |
+
fig.add_annotation(
|
| 787 |
+
text=f"Available metrics: {', '.join(available_metrics)}",
|
| 788 |
+
xref="paper", yref="paper",
|
| 789 |
+
x=0.5, y=0.5, showarrow=False
|
| 790 |
+
)
|
| 791 |
+
return fig
|
| 792 |
+
|
| 793 |
+
fig = px.line(df, x='step', y=metric_name, title=f'{metric_name} over time')
|
| 794 |
+
fig.update_layout(
|
| 795 |
+
xaxis_title="Training Step",
|
| 796 |
+
yaxis_title=metric_name.title(),
|
| 797 |
+
hovermode='x unified'
|
| 798 |
+
)
|
| 799 |
+
return fig
|
| 800 |
+
|
| 801 |
+
except Exception as e:
|
| 802 |
+
fig = go.Figure()
|
| 803 |
+
fig.add_annotation(
|
| 804 |
+
text=f"Error creating plot: {str(e)}",
|
| 805 |
+
xref="paper", yref="paper",
|
| 806 |
+
x=0.5, y=0.5, showarrow=False
|
| 807 |
+
)
|
| 808 |
+
return fig
|
| 809 |
+
|
| 810 |
+
def create_experiment_comparison(experiment_ids: str) -> go.Figure:
|
| 811 |
+
"""Compare multiple experiments"""
|
| 812 |
+
try:
|
| 813 |
+
exp_ids = [exp_id.strip() for exp_id in experiment_ids.split(',')]
|
| 814 |
+
|
| 815 |
+
fig = go.Figure()
|
| 816 |
+
|
| 817 |
+
for exp_id in exp_ids:
|
| 818 |
+
df = get_metrics_dataframe(exp_id)
|
| 819 |
+
if not df.empty and 'loss' in df.columns:
|
| 820 |
+
fig.add_trace(go.Scatter(
|
| 821 |
+
x=df['step'],
|
| 822 |
+
y=df['loss'],
|
| 823 |
+
mode='lines+markers',
|
| 824 |
+
name=f"{exp_id} - Loss",
|
| 825 |
+
line=dict(width=2)
|
| 826 |
+
))
|
| 827 |
+
|
| 828 |
+
fig.update_layout(
|
| 829 |
+
title="Experiment Comparison - Loss",
|
| 830 |
+
xaxis_title="Training Step",
|
| 831 |
+
yaxis_title="Loss",
|
| 832 |
+
hovermode='x unified'
|
| 833 |
+
)
|
| 834 |
+
|
| 835 |
+
return fig
|
| 836 |
+
|
| 837 |
+
except Exception as e:
|
| 838 |
+
fig = go.Figure()
|
| 839 |
+
fig.add_annotation(
|
| 840 |
+
text=f"Error creating comparison: {str(e)}",
|
| 841 |
+
xref="paper", yref="paper",
|
| 842 |
+
x=0.5, y=0.5, showarrow=False
|
| 843 |
+
)
|
| 844 |
+
return fig
|
| 845 |
+
|
| 846 |
+
def simulate_training_data(experiment_id: str):
|
| 847 |
+
"""Simulate training data for demonstration"""
|
| 848 |
+
try:
|
| 849 |
+
# Simulate some realistic training metrics
|
| 850 |
+
for step in range(0, 1000, 50):
|
| 851 |
+
# Simulate loss decreasing over time
|
| 852 |
+
loss = 2.0 * np.exp(-step / 500) + 0.1 * np.random.random()
|
| 853 |
+
accuracy = 0.3 + 0.6 * (1 - np.exp(-step / 300)) + 0.05 * np.random.random()
|
| 854 |
+
lr = 3.5e-6 * (0.9 ** (step // 200))
|
| 855 |
+
|
| 856 |
+
metrics = {
|
| 857 |
+
"loss": round(loss, 4),
|
| 858 |
+
"accuracy": round(accuracy, 4),
|
| 859 |
+
"learning_rate": round(lr, 8),
|
| 860 |
+
"gpu_memory": round(20 + 5 * np.random.random(), 2),
|
| 861 |
+
"training_time": round(0.5 + 0.2 * np.random.random(), 3)
|
| 862 |
+
}
|
| 863 |
+
|
| 864 |
+
trackio_space.log_metrics(experiment_id, metrics, step)
|
| 865 |
+
|
| 866 |
+
return f"✅ Simulated training data for experiment {experiment_id}\nAdded 20 metric entries (steps 0-950)"
|
| 867 |
+
except Exception as e:
|
| 868 |
+
return f"❌ Error simulating data: {str(e)}"
|
| 869 |
+
|
| 870 |
+
def create_demo_experiment():
|
| 871 |
+
"""Create a demo experiment with training data"""
|
| 872 |
+
try:
|
| 873 |
+
# Create demo experiment
|
| 874 |
+
experiment = trackio_space.create_experiment(
|
| 875 |
+
"demo_smollm3_training",
|
| 876 |
+
"Demo experiment with simulated training data"
|
| 877 |
+
)
|
| 878 |
+
|
| 879 |
+
experiment_id = experiment['id']
|
| 880 |
+
|
| 881 |
+
# Add some demo parameters
|
| 882 |
+
parameters = {
|
| 883 |
+
"model_name": "HuggingFaceTB/SmolLM3-3B",
|
| 884 |
+
"batch_size": 8,
|
| 885 |
+
"learning_rate": 3.5e-6,
|
| 886 |
+
"max_iters": 18000,
|
| 887 |
+
"mixed_precision": "bf16",
|
| 888 |
+
"dataset": "legmlai/openhermes-fr"
|
| 889 |
+
}
|
| 890 |
+
trackio_space.log_parameters(experiment_id, parameters)
|
| 891 |
+
|
| 892 |
+
# Add demo training data
|
| 893 |
+
simulate_training_data(experiment_id)
|
| 894 |
+
|
| 895 |
+
return f"✅ Demo experiment created: {experiment_id}\nYou can now test the visualization with this experiment!"
|
| 896 |
+
except Exception as e:
|
| 897 |
+
return f"❌ Error creating demo experiment: {str(e)}"
|
| 898 |
+
|
| 899 |
+
# Create Gradio interface
|
| 900 |
+
with gr.Blocks(title="Trackio - Experiment Tracking", theme=gr.themes.Soft()) as demo:
|
| 901 |
+
gr.Markdown("# 🚀 Trackio Experiment Tracking & Monitoring")
|
| 902 |
+
gr.Markdown("Monitor and track your ML experiments with real-time visualization!")
|
| 903 |
+
|
| 904 |
+
with gr.Tabs():
|
| 905 |
+
# Configuration Tab
|
| 906 |
+
with gr.Tab("⚙️ Configuration"):
|
| 907 |
+
gr.Markdown("### Configure HF Datasets Connection")
|
| 908 |
+
gr.Markdown("Set your Hugging Face token and dataset repository for persistent experiment storage.")
|
| 909 |
+
|
| 910 |
+
with gr.Row():
|
| 911 |
+
with gr.Column():
|
| 912 |
+
hf_token_input = gr.Textbox(
|
| 913 |
+
label="Hugging Face Token",
|
| 914 |
+
placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
|
| 915 |
+
type="password",
|
| 916 |
+
info="Your HF token for dataset access (optional - will use environment variable if not set)"
|
| 917 |
+
)
|
| 918 |
+
dataset_repo_input = gr.Textbox(
|
| 919 |
+
label="Dataset Repository",
|
| 920 |
+
placeholder="your-username/your-dataset-name",
|
| 921 |
+
value="tonic/trackio-experiments",
|
| 922 |
+
info="HF Dataset repository for experiment storage"
|
| 923 |
+
)
|
| 924 |
+
|
| 925 |
+
with gr.Row():
|
| 926 |
+
update_config_btn = gr.Button("Update Configuration", variant="primary")
|
| 927 |
+
test_connection_btn = gr.Button("Test Connection", variant="secondary")
|
| 928 |
+
create_repo_btn = gr.Button("Create Dataset", variant="success")
|
| 929 |
+
|
| 930 |
+
gr.Markdown("### Current Configuration")
|
| 931 |
+
current_config_output = gr.Textbox(
|
| 932 |
+
label="Status",
|
| 933 |
+
lines=8,
|
| 934 |
+
interactive=False,
|
| 935 |
+
value=f"📊 Dataset: {trackio_space.dataset_repo}\n🔑 HF Token: {'Set' if trackio_space.hf_token else 'Not set'}\n📈 Experiments: {len(trackio_space.experiments)}"
|
| 936 |
+
)
|
| 937 |
+
|
| 938 |
+
with gr.Column():
|
| 939 |
+
gr.Markdown("### Configuration Help")
|
| 940 |
+
gr.Markdown("""
|
| 941 |
+
**Getting Your HF Token:**
|
| 942 |
+
1. Go to [Hugging Face Settings](https://huggingface.co/settings/tokens)
|
| 943 |
+
2. Click "New token"
|
| 944 |
+
3. Give it a name (e.g., "Trackio Access")
|
| 945 |
+
4. Select "Write" permissions
|
| 946 |
+
5. Copy the token and paste it above
|
| 947 |
+
|
| 948 |
+
**Dataset Repository:**
|
| 949 |
+
- Format: `username/dataset-name`
|
| 950 |
+
- Examples: `tonic/trackio-experiments`, `your-username/my-experiments`
|
| 951 |
+
- Use "Create Dataset" button to create a new repository
|
| 952 |
+
|
| 953 |
+
**Environment Variables:**
|
| 954 |
+
You can also set these as environment variables:
|
| 955 |
+
- `HF_TOKEN`: Your Hugging Face token
|
| 956 |
+
- `TRACKIO_DATASET_REPO`: Dataset repository
|
| 957 |
+
|
| 958 |
+
**Actions:**
|
| 959 |
+
- **Update Configuration**: Apply new settings and reload experiments
|
| 960 |
+
- **Test Connection**: Verify access to the dataset repository
|
| 961 |
+
- **Create Dataset**: Create a new dataset repository if it doesn't exist
|
| 962 |
+
""")
|
| 963 |
+
|
| 964 |
+
update_config_btn.click(
|
| 965 |
+
update_trackio_config,
|
| 966 |
+
inputs=[hf_token_input, dataset_repo_input],
|
| 967 |
+
outputs=current_config_output
|
| 968 |
+
)
|
| 969 |
+
|
| 970 |
+
test_connection_btn.click(
|
| 971 |
+
test_dataset_connection,
|
| 972 |
+
inputs=[hf_token_input, dataset_repo_input],
|
| 973 |
+
outputs=current_config_output
|
| 974 |
+
)
|
| 975 |
+
|
| 976 |
+
create_repo_btn.click(
|
| 977 |
+
create_dataset_repository,
|
| 978 |
+
inputs=[hf_token_input, dataset_repo_input],
|
| 979 |
+
outputs=current_config_output
|
| 980 |
+
)
|
| 981 |
+
|
| 982 |
+
# Create Experiment Tab
|
| 983 |
+
with gr.Tab("Create Experiment"):
|
| 984 |
+
gr.Markdown("### Create a New Experiment")
|
| 985 |
+
with gr.Row():
|
| 986 |
+
with gr.Column():
|
| 987 |
+
experiment_name = gr.Textbox(
|
| 988 |
+
label="Experiment Name",
|
| 989 |
+
placeholder="my_smollm3_finetune",
|
| 990 |
+
value="smollm3_finetune"
|
| 991 |
+
)
|
| 992 |
+
experiment_description = gr.Textbox(
|
| 993 |
+
label="Description",
|
| 994 |
+
placeholder="Fine-tuning SmolLM3 model on custom dataset",
|
| 995 |
+
value="SmolLM3 fine-tuning experiment"
|
| 996 |
+
)
|
| 997 |
+
create_btn = gr.Button("Create Experiment", variant="primary")
|
| 998 |
+
|
| 999 |
+
with gr.Column():
|
| 1000 |
+
create_output = gr.Textbox(
|
| 1001 |
+
label="Result",
|
| 1002 |
+
lines=5,
|
| 1003 |
+
interactive=False
|
| 1004 |
+
)
|
| 1005 |
+
|
| 1006 |
+
create_btn.click(
|
| 1007 |
+
create_experiment_interface,
|
| 1008 |
+
inputs=[experiment_name, experiment_description],
|
| 1009 |
+
outputs=create_output
|
| 1010 |
+
)
|
| 1011 |
+
|
| 1012 |
+
# Log Metrics Tab
|
| 1013 |
+
with gr.Tab("Log Metrics"):
|
| 1014 |
+
gr.Markdown("### Log Training Metrics")
|
| 1015 |
+
with gr.Row():
|
| 1016 |
+
with gr.Column():
|
| 1017 |
+
metrics_exp_id = gr.Textbox(
|
| 1018 |
+
label="Experiment ID",
|
| 1019 |
+
placeholder="exp_20231201_143022"
|
| 1020 |
+
)
|
| 1021 |
+
metrics_json = gr.Textbox(
|
| 1022 |
+
label="Metrics (JSON)",
|
| 1023 |
+
placeholder='{"loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5}',
|
| 1024 |
+
value='{"loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5, "gpu_memory": 22.5}'
|
| 1025 |
+
)
|
| 1026 |
+
metrics_step = gr.Textbox(
|
| 1027 |
+
label="Step (optional)",
|
| 1028 |
+
placeholder="100"
|
| 1029 |
+
)
|
| 1030 |
+
log_metrics_btn = gr.Button("Log Metrics", variant="primary")
|
| 1031 |
+
|
| 1032 |
+
with gr.Column():
|
| 1033 |
+
metrics_output = gr.Textbox(
|
| 1034 |
+
label="Result",
|
| 1035 |
+
lines=5,
|
| 1036 |
+
interactive=False
|
| 1037 |
+
)
|
| 1038 |
+
|
| 1039 |
+
log_metrics_btn.click(
|
| 1040 |
+
log_metrics_interface,
|
| 1041 |
+
inputs=[metrics_exp_id, metrics_json, metrics_step],
|
| 1042 |
+
outputs=metrics_output
|
| 1043 |
+
)
|
| 1044 |
+
|
| 1045 |
+
# Log Parameters Tab
|
| 1046 |
+
with gr.Tab("Log Parameters"):
|
| 1047 |
+
gr.Markdown("### Log Experiment Parameters")
|
| 1048 |
+
with gr.Row():
|
| 1049 |
+
with gr.Column():
|
| 1050 |
+
params_exp_id = gr.Textbox(
|
| 1051 |
+
label="Experiment ID",
|
| 1052 |
+
placeholder="exp_20231201_143022"
|
| 1053 |
+
)
|
| 1054 |
+
parameters_json = gr.Textbox(
|
| 1055 |
+
label="Parameters (JSON)",
|
| 1056 |
+
placeholder='{"learning_rate": 2e-5, "batch_size": 4}',
|
| 1057 |
+
value='{"learning_rate": 3.5e-6, "batch_size": 8, "model_name": "HuggingFaceTB/SmolLM3-3B", "max_iters": 18000, "mixed_precision": "bf16"}'
|
| 1058 |
+
)
|
| 1059 |
+
log_params_btn = gr.Button("Log Parameters", variant="primary")
|
| 1060 |
+
|
| 1061 |
+
with gr.Column():
|
| 1062 |
+
params_output = gr.Textbox(
|
| 1063 |
+
label="Result",
|
| 1064 |
+
lines=5,
|
| 1065 |
+
interactive=False
|
| 1066 |
+
)
|
| 1067 |
+
|
| 1068 |
+
log_params_btn.click(
|
| 1069 |
+
log_parameters_interface,
|
| 1070 |
+
inputs=[params_exp_id, parameters_json],
|
| 1071 |
+
outputs=params_output
|
| 1072 |
+
)
|
| 1073 |
+
|
| 1074 |
+
# View Experiments Tab
|
| 1075 |
+
with gr.Tab("View Experiments"):
|
| 1076 |
+
gr.Markdown("### View Experiment Details")
|
| 1077 |
+
with gr.Row():
|
| 1078 |
+
with gr.Column():
|
| 1079 |
+
view_exp_id = gr.Textbox(
|
| 1080 |
+
label="Experiment ID",
|
| 1081 |
+
placeholder="exp_20231201_143022"
|
| 1082 |
+
)
|
| 1083 |
+
view_btn = gr.Button("View Experiment", variant="primary")
|
| 1084 |
+
list_btn = gr.Button("List All Experiments", variant="secondary")
|
| 1085 |
+
|
| 1086 |
+
with gr.Column():
|
| 1087 |
+
view_output = gr.Textbox(
|
| 1088 |
+
label="Experiment Details",
|
| 1089 |
+
lines=20,
|
| 1090 |
+
interactive=False
|
| 1091 |
+
)
|
| 1092 |
+
|
| 1093 |
+
view_btn.click(
|
| 1094 |
+
get_experiment_details,
|
| 1095 |
+
inputs=[view_exp_id],
|
| 1096 |
+
outputs=view_output
|
| 1097 |
+
)
|
| 1098 |
+
|
| 1099 |
+
list_btn.click(
|
| 1100 |
+
list_experiments_interface,
|
| 1101 |
+
inputs=[],
|
| 1102 |
+
outputs=view_output
|
| 1103 |
+
)
|
| 1104 |
+
|
| 1105 |
+
# Visualization Tab
|
| 1106 |
+
with gr.Tab("📊 Visualizations"):
|
| 1107 |
+
gr.Markdown("### Training Metrics Visualization")
|
| 1108 |
+
with gr.Row():
|
| 1109 |
+
with gr.Column():
|
| 1110 |
+
plot_exp_id = gr.Textbox(
|
| 1111 |
+
label="Experiment ID",
|
| 1112 |
+
placeholder="exp_20231201_143022"
|
| 1113 |
+
)
|
| 1114 |
+
metric_dropdown = gr.Dropdown(
|
| 1115 |
+
label="Metric to Plot",
|
| 1116 |
+
choices=["loss", "accuracy", "learning_rate", "gpu_memory", "training_time"],
|
| 1117 |
+
value="loss"
|
| 1118 |
+
)
|
| 1119 |
+
plot_btn = gr.Button("Create Plot", variant="primary")
|
| 1120 |
+
|
| 1121 |
+
with gr.Column():
|
| 1122 |
+
plot_output = gr.Plot(label="Training Metrics")
|
| 1123 |
+
|
| 1124 |
+
plot_btn.click(
|
| 1125 |
+
create_metrics_plot,
|
| 1126 |
+
inputs=[plot_exp_id, metric_dropdown],
|
| 1127 |
+
outputs=plot_output
|
| 1128 |
+
)
|
| 1129 |
+
|
| 1130 |
+
gr.Markdown("### Experiment Comparison")
|
| 1131 |
+
with gr.Row():
|
| 1132 |
+
with gr.Column():
|
| 1133 |
+
comparison_exp_ids = gr.Textbox(
|
| 1134 |
+
label="Experiment IDs (comma-separated)",
|
| 1135 |
+
placeholder="exp_1,exp_2,exp_3"
|
| 1136 |
+
)
|
| 1137 |
+
comparison_btn = gr.Button("Compare Experiments", variant="primary")
|
| 1138 |
+
|
| 1139 |
+
with gr.Column():
|
| 1140 |
+
comparison_plot = gr.Plot(label="Experiment Comparison")
|
| 1141 |
+
|
| 1142 |
+
comparison_btn.click(
|
| 1143 |
+
create_experiment_comparison,
|
| 1144 |
+
inputs=[comparison_exp_ids],
|
| 1145 |
+
outputs=comparison_plot
|
| 1146 |
+
)
|
| 1147 |
+
|
| 1148 |
+
# Demo Data Tab
|
| 1149 |
+
with gr.Tab("🎯 Demo Data"):
|
| 1150 |
+
gr.Markdown("### Generate Demo Training Data")
|
| 1151 |
+
gr.Markdown("Use this to simulate training data for testing the interface")
|
| 1152 |
+
with gr.Row():
|
| 1153 |
+
with gr.Column():
|
| 1154 |
+
demo_exp_id = gr.Textbox(
|
| 1155 |
+
label="Experiment ID",
|
| 1156 |
+
placeholder="exp_20231201_143022"
|
| 1157 |
+
)
|
| 1158 |
+
demo_btn = gr.Button("Generate Demo Data", variant="primary")
|
| 1159 |
+
create_demo_btn = gr.Button("Create Demo Experiment", variant="secondary")
|
| 1160 |
+
|
| 1161 |
+
with gr.Column():
|
| 1162 |
+
demo_output = gr.Textbox(
|
| 1163 |
+
label="Result",
|
| 1164 |
+
lines=5,
|
| 1165 |
+
interactive=False
|
| 1166 |
+
)
|
| 1167 |
+
|
| 1168 |
+
demo_btn.click(
|
| 1169 |
+
simulate_training_data,
|
| 1170 |
+
inputs=[demo_exp_id],
|
| 1171 |
+
outputs=demo_output
|
| 1172 |
+
)
|
| 1173 |
+
|
| 1174 |
+
create_demo_btn.click(
|
| 1175 |
+
create_demo_experiment,
|
| 1176 |
+
inputs=[],
|
| 1177 |
+
outputs=demo_output
|
| 1178 |
+
)
|
| 1179 |
+
|
| 1180 |
+
# Update Status Tab
|
| 1181 |
+
with gr.Tab("Update Status"):
|
| 1182 |
+
gr.Markdown("### Update Experiment Status")
|
| 1183 |
+
with gr.Row():
|
| 1184 |
+
with gr.Column():
|
| 1185 |
+
status_exp_id = gr.Textbox(
|
| 1186 |
+
label="Experiment ID",
|
| 1187 |
+
placeholder="exp_20231201_143022"
|
| 1188 |
+
)
|
| 1189 |
+
status_dropdown = gr.Dropdown(
|
| 1190 |
+
label="Status",
|
| 1191 |
+
choices=["running", "completed", "failed", "paused"],
|
| 1192 |
+
value="running"
|
| 1193 |
+
)
|
| 1194 |
+
update_status_btn = gr.Button("Update Status", variant="primary")
|
| 1195 |
+
|
| 1196 |
+
with gr.Column():
|
| 1197 |
+
status_output = gr.Textbox(
|
| 1198 |
+
label="Result",
|
| 1199 |
+
lines=3,
|
| 1200 |
+
interactive=False
|
| 1201 |
+
)
|
| 1202 |
+
|
| 1203 |
+
update_status_btn.click(
|
| 1204 |
+
update_experiment_status_interface,
|
| 1205 |
+
inputs=[status_exp_id, status_dropdown],
|
| 1206 |
+
outputs=status_output
|
| 1207 |
+
)
|
| 1208 |
+
|
| 1209 |
+
# Launch the app
|
| 1210 |
+
if __name__ == "__main__":
|
| 1211 |
+
demo.launch()
|
scripts/trackio_tonic/requirements.txt
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Gradio and web interface
|
| 2 |
+
gradio>=4.0.0
|
| 3 |
+
gradio-client>=0.10.0
|
| 4 |
+
|
| 5 |
+
# Core dependencies for Trackio Space
|
| 6 |
+
requests>=2.31.0
|
| 7 |
+
numpy>=1.24.0
|
| 8 |
+
pandas>=2.0.0
|
| 9 |
+
|
| 10 |
+
# JSON and data handling
|
| 11 |
+
jsonschema>=4.17.0
|
| 12 |
+
|
| 13 |
+
# Optional: for better UI
|
| 14 |
+
plotly>=5.0.0
|
| 15 |
+
pandas>=2.0.0
|
| 16 |
+
numpy>=1.24.0
|
| 17 |
+
datasets>=2.14.0
|
| 18 |
+
huggingface-hub>=0.16.0
|
| 19 |
+
requests>=2.31.0
|
| 20 |
+
|
| 21 |
+
# Development and debugging
|
| 22 |
+
python-dotenv>=1.0.0
|