Spaces:
Running
Running
adds more documentation
Browse files- .cursorrules +277 -0
- .gitignore +2 -1
.cursorrules
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
description: SmolLM3 Fine-tuning Pipeline - Project Rules and Conventions
|
| 3 |
+
globs: ["**/*.py", "**/*.sh", "**/*.md", "**/*.json"]
|
| 4 |
+
alwaysApply: true
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
# SmolLM3 Fine-tuning Pipeline Project Rules
|
| 8 |
+
|
| 9 |
+
## Project Overview
|
| 10 |
+
This is a comprehensive end-to-end fine-tuning pipeline for SmolLM3 models with Trackio monitoring, Hugging Face integration, and interactive configuration management.
|
| 11 |
+
|
| 12 |
+
## Core Architecture
|
| 13 |
+
|
| 14 |
+
### Directory Structure
|
| 15 |
+
- `config/` - Training configuration files for different scenarios
|
| 16 |
+
- `src/` - Core training and model logic
|
| 17 |
+
- `scripts/` - Utility scripts for deployment, dataset management, and model pushing
|
| 18 |
+
- `docs/` - Comprehensive documentation and guides
|
| 19 |
+
- `templates/` - Templates for HF Spaces and datasets
|
| 20 |
+
- `tests/` - Test files and debugging scripts
|
| 21 |
+
- `outputs/` - Training outputs and checkpoints
|
| 22 |
+
|
| 23 |
+
### Key Components
|
| 24 |
+
|
| 25 |
+
#### Training Configurations
|
| 26 |
+
- **Basic Training**: SmolLM3-3B + OpenHermes-FR, 3 epochs, batch size 2
|
| 27 |
+
- **H100 Lightweight**: SmolLM3-3B + OpenHermes-FR (80K samples), 1 epoch, batch size 16
|
| 28 |
+
- **A100 Large Scale**: SmolLM3-3B + OpenHermes-FR, 1.3 passes, batch size 8
|
| 29 |
+
- **Multiple Passes**: SmolLM3-3B + OpenHermes-FR, 4 epochs, batch size 6
|
| 30 |
+
- **Custom Configuration**: User-defined parameters
|
| 31 |
+
|
| 32 |
+
#### Core Modules
|
| 33 |
+
- `src/train.py` - Main training orchestration
|
| 34 |
+
- `src/model.py` - Model loading and configuration
|
| 35 |
+
- `src/data.py` - Dataset processing and loading
|
| 36 |
+
- `src/monitoring.py` - Trackio integration and metrics
|
| 37 |
+
- `src/trainer.py` - Training loop and optimization
|
| 38 |
+
|
| 39 |
+
## Coding Conventions
|
| 40 |
+
|
| 41 |
+
### Python Style
|
| 42 |
+
- Use type hints for all function parameters and return values
|
| 43 |
+
- Follow PEP 8 for formatting
|
| 44 |
+
- Use descriptive variable names in snake_case
|
| 45 |
+
- Add comprehensive docstrings for all functions
|
| 46 |
+
- Use f-strings for string formatting
|
| 47 |
+
|
| 48 |
+
### Configuration Management
|
| 49 |
+
- All training configs inherit from `SmolLM3Config` base class
|
| 50 |
+
- Use dataclasses for configuration objects
|
| 51 |
+
- Validate configuration parameters in __post_init__
|
| 52 |
+
- Support both YAML and Python configuration files
|
| 53 |
+
|
| 54 |
+
### Error Handling
|
| 55 |
+
- Use try-except blocks for external API calls (HF, Trackio)
|
| 56 |
+
- Log errors with appropriate context
|
| 57 |
+
- Provide user-friendly error messages
|
| 58 |
+
- Implement graceful degradation for optional features
|
| 59 |
+
|
| 60 |
+
### Monitoring Integration
|
| 61 |
+
- Always include Trackio URL and experiment name in configs
|
| 62 |
+
- Log metrics every N steps (configurable)
|
| 63 |
+
- Save checkpoints and artifacts to HF Datasets
|
| 64 |
+
- Use structured logging with consistent field names
|
| 65 |
+
|
| 66 |
+
## File Naming Conventions
|
| 67 |
+
|
| 68 |
+
### Configuration Files
|
| 69 |
+
- `train_smollm3_*.py` - Training configurations
|
| 70 |
+
- `*_config.py` - General configuration files
|
| 71 |
+
- Use descriptive suffixes: `_h100_lightweight`, `_a100_large`, `_multiple_passes`
|
| 72 |
+
|
| 73 |
+
### Script Files
|
| 74 |
+
- `deploy_*.py` - Deployment scripts
|
| 75 |
+
- `setup_*.py` - Setup and initialization scripts
|
| 76 |
+
- `push_*.py` - Model pushing scripts
|
| 77 |
+
- `configure_*.py` - Configuration scripts
|
| 78 |
+
|
| 79 |
+
### Test Files
|
| 80 |
+
- `test_*.py` - Test files
|
| 81 |
+
- `debug_*.py` - Debugging scripts
|
| 82 |
+
- Include descriptive names indicating what they test
|
| 83 |
+
|
| 84 |
+
## Training Pipeline Workflow
|
| 85 |
+
|
| 86 |
+
### Interactive Pipeline (`launch.sh`)
|
| 87 |
+
1. **Authentication**: HF username and token validation
|
| 88 |
+
2. **Configuration Selection**: Choose from predefined configs or custom
|
| 89 |
+
3. **Experiment Setup**: Configure experiment name and repositories
|
| 90 |
+
4. **Environment Setup**: Install dependencies and setup virtual environment
|
| 91 |
+
5. **Deployment**: Deploy Trackio Space and setup HF Dataset
|
| 92 |
+
6. **Training**: Execute training with monitoring
|
| 93 |
+
7. **Model Push**: Upload model to HF Hub with documentation
|
| 94 |
+
8. **Testing**: Validate uploaded model functionality
|
| 95 |
+
|
| 96 |
+
### Configuration Selection Logic
|
| 97 |
+
- Basic Training: Default for beginners and learning
|
| 98 |
+
- H100 Lightweight: Rapid experiments on H100 GPUs
|
| 99 |
+
- A100 Large Scale: Serious research and production
|
| 100 |
+
- Multiple Passes: Thorough training for production models
|
| 101 |
+
- Custom: User-defined parameters for specific needs
|
| 102 |
+
|
| 103 |
+
## Dataset Management
|
| 104 |
+
|
| 105 |
+
### Supported Formats
|
| 106 |
+
- Hugging Face Datasets format
|
| 107 |
+
- JSON files with prompt/completion pairs
|
| 108 |
+
- Chat format with messages array
|
| 109 |
+
- Custom formats with conversion functions
|
| 110 |
+
|
| 111 |
+
### Dataset Processing
|
| 112 |
+
- Automatic format detection and conversion
|
| 113 |
+
- Random sampling for lightweight configurations
|
| 114 |
+
- Validation split creation
|
| 115 |
+
- Bad entry filtering and handling
|
| 116 |
+
|
| 117 |
+
### Dataset Sampling (H100 Lightweight)
|
| 118 |
+
- 80,000 random samples from OpenHermes-FR
|
| 119 |
+
- 1,000 validation samples (if available)
|
| 120 |
+
- Fixed random seed (42) for reproducibility
|
| 121 |
+
- Automatic sampling during dataset preparation
|
| 122 |
+
|
| 123 |
+
## Model Management
|
| 124 |
+
|
| 125 |
+
### Model Loading
|
| 126 |
+
- Support for HuggingFaceTB/SmolLM3-3B
|
| 127 |
+
- Flash attention and gradient checkpointing
|
| 128 |
+
- Mixed precision training (fp16/bf16)
|
| 129 |
+
- Device mapping and memory optimization
|
| 130 |
+
|
| 131 |
+
### Model Pushing
|
| 132 |
+
- Comprehensive model cards with training details
|
| 133 |
+
- Automatic README generation
|
| 134 |
+
- License and usage information
|
| 135 |
+
- Training metrics and configuration
|
| 136 |
+
|
| 137 |
+
## Monitoring and Tracking
|
| 138 |
+
|
| 139 |
+
### Trackio Integration
|
| 140 |
+
- Real-time metrics logging
|
| 141 |
+
- Training curves visualization
|
| 142 |
+
- Resource usage monitoring
|
| 143 |
+
- Artifact storage and versioning
|
| 144 |
+
|
| 145 |
+
### Metrics to Track
|
| 146 |
+
- Training and validation loss
|
| 147 |
+
- Learning rate schedule
|
| 148 |
+
- Gradient norms
|
| 149 |
+
- GPU utilization and memory
|
| 150 |
+
- Training speed (steps/second)
|
| 151 |
+
|
| 152 |
+
## Error Handling and Validation
|
| 153 |
+
|
| 154 |
+
### Input Validation
|
| 155 |
+
- Validate HF tokens before use
|
| 156 |
+
- Check CUDA availability
|
| 157 |
+
- Verify dataset accessibility
|
| 158 |
+
- Validate configuration parameters
|
| 159 |
+
|
| 160 |
+
### Error Recovery
|
| 161 |
+
- Graceful handling of network issues
|
| 162 |
+
- Automatic retry for failed operations
|
| 163 |
+
- Checkpoint recovery for interrupted training
|
| 164 |
+
- Fallback options for optional features
|
| 165 |
+
|
| 166 |
+
## Documentation Standards
|
| 167 |
+
|
| 168 |
+
### README Files
|
| 169 |
+
- Clear project description
|
| 170 |
+
- Installation instructions
|
| 171 |
+
- Usage examples
|
| 172 |
+
- Configuration options
|
| 173 |
+
- Troubleshooting guide
|
| 174 |
+
|
| 175 |
+
### Code Documentation
|
| 176 |
+
- Comprehensive docstrings
|
| 177 |
+
- Type hints for all functions
|
| 178 |
+
- Example usage in docstrings
|
| 179 |
+
- Parameter descriptions
|
| 180 |
+
- Return value documentation
|
| 181 |
+
|
| 182 |
+
## Testing and Validation
|
| 183 |
+
|
| 184 |
+
### Test Categories
|
| 185 |
+
- Unit tests for core functions
|
| 186 |
+
- Integration tests for pipeline
|
| 187 |
+
- Configuration validation tests
|
| 188 |
+
- Model loading and saving tests
|
| 189 |
+
- Dataset processing tests
|
| 190 |
+
|
| 191 |
+
### Debugging Tools
|
| 192 |
+
- Standalone test scripts
|
| 193 |
+
- Configuration validation
|
| 194 |
+
- Model testing utilities
|
| 195 |
+
- Dataset inspection tools
|
| 196 |
+
|
| 197 |
+
## Performance Optimization
|
| 198 |
+
|
| 199 |
+
### H100 Optimizations
|
| 200 |
+
- Larger batch sizes (16 vs 8 for A100)
|
| 201 |
+
- Reduced gradient accumulation (4 vs 16)
|
| 202 |
+
- Higher learning rates (8e-6 vs 5e-6)
|
| 203 |
+
- Optimized data loading (4 workers, pin memory)
|
| 204 |
+
|
| 205 |
+
### Memory Management
|
| 206 |
+
- Gradient checkpointing for large models
|
| 207 |
+
- Mixed precision training
|
| 208 |
+
- Dynamic batch sizing
|
| 209 |
+
- Memory-efficient data loading
|
| 210 |
+
|
| 211 |
+
## Security and Best Practices
|
| 212 |
+
|
| 213 |
+
### Token Management
|
| 214 |
+
- Never hardcode tokens in code
|
| 215 |
+
- Use environment variables
|
| 216 |
+
- Validate tokens before use
|
| 217 |
+
- Secure token storage
|
| 218 |
+
|
| 219 |
+
### Data Privacy
|
| 220 |
+
- Filter sensitive data from datasets
|
| 221 |
+
- Validate dataset contents
|
| 222 |
+
- Secure data transmission
|
| 223 |
+
- Proper data disposal
|
| 224 |
+
|
| 225 |
+
## Deployment and CI/CD
|
| 226 |
+
|
| 227 |
+
### Environment Setup
|
| 228 |
+
- Python virtual environments
|
| 229 |
+
- CUDA-compatible PyTorch
|
| 230 |
+
- Required dependencies installation
|
| 231 |
+
- System package management
|
| 232 |
+
|
| 233 |
+
### Automated Deployment
|
| 234 |
+
- Trackio Space deployment
|
| 235 |
+
- HF Dataset setup
|
| 236 |
+
- Model repository creation
|
| 237 |
+
- Configuration file generation
|
| 238 |
+
|
| 239 |
+
## Troubleshooting Guidelines
|
| 240 |
+
|
| 241 |
+
### Common Issues
|
| 242 |
+
- CUDA out of memory: Reduce batch size
|
| 243 |
+
- Network timeouts: Check internet connection
|
| 244 |
+
- Token validation: Verify HF token permissions
|
| 245 |
+
- Dataset loading: Check dataset accessibility
|
| 246 |
+
|
| 247 |
+
### Debugging Steps
|
| 248 |
+
1. Check system requirements
|
| 249 |
+
2. Validate configuration
|
| 250 |
+
3. Test individual components
|
| 251 |
+
4. Review logs and error messages
|
| 252 |
+
5. Verify external service connectivity
|
| 253 |
+
|
| 254 |
+
## Future Enhancements
|
| 255 |
+
|
| 256 |
+
### Planned Features
|
| 257 |
+
- Multi-GPU training support
|
| 258 |
+
- Advanced dataset sampling strategies
|
| 259 |
+
- Automated hyperparameter optimization
|
| 260 |
+
- Enhanced monitoring and visualization
|
| 261 |
+
- Support for additional model architectures
|
| 262 |
+
|
| 263 |
+
### Extensibility
|
| 264 |
+
- Modular configuration system
|
| 265 |
+
- Plugin architecture for custom features
|
| 266 |
+
- Support for custom datasets and models
|
| 267 |
+
- Flexible monitoring integration
|
| 268 |
+
|
| 269 |
+
---
|
| 270 |
+
|
| 271 |
+
**When working with this codebase:**
|
| 272 |
+
- Always consider the end-to-end pipeline workflow
|
| 273 |
+
- Follow the established configuration patterns
|
| 274 |
+
- Include proper error handling and validation
|
| 275 |
+
- Maintain comprehensive documentation
|
| 276 |
+
- Test changes thoroughly before deployment
|
| 277 |
+
- Consider performance implications for different hardware configurations
|
.gitignore
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
-
.
|
|
|
|
| 2 |
*.mdc
|
| 3 |
|
| 4 |
# Python
|
|
|
|
| 1 |
+
.cursor/
|
| 2 |
+
.cursor/rules/
|
| 3 |
*.mdc
|
| 4 |
|
| 5 |
# Python
|