SmolFactory / scripts /model_tonic /quantize_model.py
Tonic's picture
Fix model recovery and deployment scripts - add safetensors support and Windows compatibility
d0d19b2 verified
raw
history blame
21 kB
#!/usr/bin/env python3
"""
Quantize Trained Model using torchao
Supports int8 (GPU) and int4 (CPU) quantization with Hugging Face Hub integration
"""
import os
import json
import argparse
import logging
from pathlib import Path
from typing import Dict, Any, Optional, List, Union
from datetime import datetime
import subprocess
import shutil
import platform
try:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
from torchao.quantization import (
Int8WeightOnlyConfig,
Int4WeightOnlyConfig,
Int8DynamicActivationInt8WeightConfig
)
from torchao.dtypes import Int4CPULayout
TORCHAO_AVAILABLE = True
except ImportError:
TORCHAO_AVAILABLE = False
print("Warning: torchao not available. Install with: pip install torchao")
try:
from huggingface_hub import HfApi, create_repo, upload_file
from huggingface_hub import snapshot_download, hf_hub_download
HF_AVAILABLE = True
except ImportError:
HF_AVAILABLE = False
print("Warning: huggingface_hub not available. Install with: pip install huggingface_hub")
try:
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', 'src'))
from monitoring import SmolLM3Monitor
MONITORING_AVAILABLE = True
except ImportError:
MONITORING_AVAILABLE = False
print("Warning: monitoring module not available")
logger = logging.getLogger(__name__)
class ModelQuantizer:
"""Quantize models using torchao with HF Hub integration"""
def __init__(
self,
model_path: str,
repo_name: str,
token: Optional[str] = None,
private: bool = False,
trackio_url: Optional[str] = None,
experiment_name: Optional[str] = None,
dataset_repo: Optional[str] = None,
hf_token: Optional[str] = None
):
self.model_path = Path(model_path)
self.repo_name = repo_name
self.token = token or hf_token or os.getenv('HF_TOKEN')
self.private = private
self.trackio_url = trackio_url
self.experiment_name = experiment_name
# HF Datasets configuration
self.dataset_repo = dataset_repo or os.getenv('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
self.hf_token = hf_token or os.getenv('HF_TOKEN')
# Initialize HF API
if HF_AVAILABLE:
self.api = HfApi(token=self.token)
else:
raise ImportError("huggingface_hub is required. Install with: pip install huggingface_hub")
# Initialize monitoring if available
self.monitor = None
if MONITORING_AVAILABLE:
self.monitor = SmolLM3Monitor(
experiment_name=experiment_name or "model_quantization",
trackio_url=trackio_url,
enable_tracking=bool(trackio_url),
hf_token=self.hf_token,
dataset_repo=self.dataset_repo
)
logger.info(f"Initialized ModelQuantizer for {repo_name}")
logger.info(f"Dataset repository: {self.dataset_repo}")
def validate_model_path(self) -> bool:
"""Validate that the model path exists and contains required files"""
if not self.model_path.exists():
logger.error(f"❌ Model path does not exist: {self.model_path}")
return False
# Check for essential model files
required_files = ['config.json']
optional_files = ['tokenizer.json', 'tokenizer_config.json']
# Check for model files (either safetensors or pytorch)
model_files = [
"model.safetensors.index.json", # Safetensors format
"pytorch_model.bin" # PyTorch format
]
missing_files = []
for file in required_files:
if not (self.model_path / file).exists():
missing_files.append(file)
# Check if at least one model file exists
model_file_exists = any((self.model_path / file).exists() for file in model_files)
if not model_file_exists:
missing_files.extend(model_files)
if missing_files:
logger.error(f"❌ Missing required model files: {missing_files}")
return False
logger.info(f"βœ… Model path validated: {self.model_path}")
return True
def create_quantization_config(self, quant_type: str, group_size: int = 128) -> TorchAoConfig:
"""Create torchao quantization configuration"""
if not TORCHAO_AVAILABLE:
raise ImportError("torchao is required. Install with: pip install torchao")
if quant_type == "int8_weight_only":
quant_config = Int8WeightOnlyConfig(group_size=group_size)
elif quant_type == "int4_weight_only":
# For int4, we need to specify CPU layout
quant_config = Int4WeightOnlyConfig(group_size=group_size, layout=Int4CPULayout())
elif quant_type == "int8_dynamic":
quant_config = Int8DynamicActivationInt8WeightConfig()
else:
raise ValueError(f"Unsupported quantization type: {quant_type}")
return TorchAoConfig(quant_type=quant_config)
def quantize_model(
self,
quant_type: str,
device: str = "auto",
group_size: int = 128,
save_dir: Optional[str] = None
) -> Optional[str]:
"""Quantize the model using torchao"""
if not TORCHAO_AVAILABLE:
logger.error("❌ torchao not available")
return None
try:
logger.info(f"πŸ”„ Loading model from: {self.model_path}")
logger.info(f"πŸ”„ Quantization type: {quant_type}")
logger.info(f"πŸ”„ Device: {device}")
logger.info(f"πŸ”„ Group size: {group_size}")
# Create quantization config
quantization_config = self.create_quantization_config(quant_type, group_size)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
str(self.model_path),
torch_dtype="auto",
device_map=device,
quantization_config=quantization_config
)
# Determine save directory
if save_dir is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = f"quantized_{quant_type}_{timestamp}"
save_path = Path(save_dir)
save_path.mkdir(parents=True, exist_ok=True)
# Save quantized model (don't use safetensors for torchao)
logger.info(f"πŸ’Ύ Saving quantized model to: {save_path}")
quantized_model.save_pretrained(save_path, safe_serialization=False)
# Copy tokenizer files if they exist
tokenizer_files = ['tokenizer.json', 'tokenizer_config.json', 'special_tokens_map.json']
for file in tokenizer_files:
src_file = self.model_path / file
if src_file.exists():
shutil.copy2(src_file, save_path / file)
logger.info(f"πŸ“‹ Copied {file}")
logger.info(f"βœ… Model quantized successfully: {save_path}")
return str(save_path)
except Exception as e:
logger.error(f"❌ Quantization failed: {e}")
return None
def create_quantized_model_card(self, quant_type: str, original_model: str, subdir: str) -> str:
"""Create a model card for the quantized model"""
repo_name = self.repo_name
card_content = f"""---
language:
- en
- fr
license: apache-2.0
tags:
- quantized
- {quant_type}
- smollm3
- fine-tuned
---
# Quantized SmolLM3 Model
This is a quantized version of the SmolLM3 model using torchao quantization.
## Model Details
- **Base Model**: SmolLM3-3B
- **Quantization Type**: {quant_type}
- **Original Model**: {original_model}
- **Quantization Library**: torchao
- **Hardware Compatibility**: {'GPU' if 'int8' in quant_type else 'CPU'}
## Usage
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the quantized model
model = AutoModelForCausalLM.from_pretrained(
f"{repo_name}/{subdir}",
device_map="auto",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(f"{repo_name}/{subdir}")
# Generate text
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to(model.device.type)
output = model.generate(**input_ids, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Quantization Details
- **Method**: torchao {quant_type}
- **Precision**: {'8-bit' if 'int8' in quant_type else '4-bit'}
- **Memory Reduction**: {'~50%' if 'int8' in quant_type else '~75%'}
- **Speed**: {'Faster inference with minimal accuracy loss' if 'int8' in quant_type else 'Significantly faster inference with some accuracy trade-off'}
## Training Information
This model was quantized from a fine-tuned SmolLM3 model using the torchao library.
The quantization process preserves the model's capabilities while reducing memory usage and improving inference speed.
## Limitations
- Quantized models may have slightly reduced accuracy compared to the original model
- {quant_type} quantization is optimized for {'GPU inference' if 'int8' in quant_type else 'CPU inference'}
- Some advanced features may not be available in quantized form
## Citation
If you use this model, please cite the original SmolLM3 paper and mention the quantization process.
```bibtex
@misc{{smollm3-quantized,
title={{Quantized SmolLM3 Model}},
author={{Your Name}},
year={{2024}},
url={{https://huggingface.co/{repo_name}/{subdir}}}
}}
```
"""
return card_content
def create_quantized_readme(self, quant_type: str, original_model: str, subdir: str) -> str:
"""Create a README for the quantized model repository"""
repo_name = self.repo_name
readme_content = f"""# Quantized SmolLM3 Model
This repository contains a quantized version of the SmolLM3 model using torchao quantization.
## Model Information
- **Model Type**: Quantized SmolLM3-3B
- **Quantization**: {quant_type}
- **Original Model**: {original_model}
- **Library**: torchao
- **Hardware**: {'GPU optimized' if 'int8' in quant_type else 'CPU optimized'}
## Quick Start
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the quantized model
model = AutoModelForCausalLM.from_pretrained(
f"{repo_name}/{subdir}",
device_map="auto",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(f"{repo_name}/{subdir}")
# Generate text
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to(model.device.type)
output = model.generate(**input_ids, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Quantization Benefits
- **Memory Efficiency**: {'~50% reduction in memory usage' if 'int8' in quant_type else '~75% reduction in memory usage'}
- **Speed**: {'Faster inference with minimal accuracy loss' if 'int8' in quant_type else 'Significantly faster inference'}
- **Compatibility**: {'GPU optimized for high-performance inference' if 'int8' in quant_type else 'CPU optimized for deployment'}
## Installation
```bash
pip install torchao transformers
```
## Usage Examples
### Text Generation
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(f"{repo_name}/{subdir}")
tokenizer = AutoTokenizer.from_pretrained(f"{repo_name}/{subdir}")
text = "The future of artificial intelligence is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Conversation
```python
def chat_with_model(prompt, max_length=100):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=max_length)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
response = chat_with_model("Hello, how are you today?")
print(response)
```
## Model Architecture
This is a quantized version of the SmolLM3-3B model with the following specifications:
- **Base Model**: SmolLM3-3B
- **Quantization**: {quant_type}
- **Parameters**: ~3B (quantized)
- **Context Length**: Variable (depends on original model)
- **Languages**: English, French
## Performance
The quantized model provides:
- **Memory Usage**: {'~50% of original model' if 'int8' in quant_type else '~25% of original model'}
- **Inference Speed**: {'Faster than original with minimal accuracy loss' if 'int8' in quant_type else 'Significantly faster with some accuracy trade-off'}
- **Accuracy**: {'Minimal degradation' if 'int8' in quant_type else 'Some degradation acceptable for speed'}
## Limitations
1. **Accuracy**: Quantized models may have slightly reduced accuracy
2. **Compatibility**: {'GPU optimized, may not work on CPU' if 'int8' in quant_type else 'CPU optimized, may not work on GPU'}
3. **Features**: Some advanced features may not be available
4. **Training**: Cannot be further fine-tuned in quantized form
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{{smollm3-quantized,
title={{Quantized SmolLM3 Model}},
author={{Your Name}},
year={{2024}},
url={{https://huggingface.co/{repo_name}/{subdir}}}
}}
```
## License
This model is licensed under the Apache 2.0 License.
## Support
For questions and support, please open an issue on the Hugging Face repository.
"""
return readme_content
def push_quantized_model(
self,
quantized_model_path: str,
quant_type: str,
original_model: str
) -> bool:
"""Push quantized model to the same Hugging Face repository as the main model"""
try:
logger.info(f"πŸš€ Pushing quantized model to subdirectory in: {self.repo_name}")
# Determine subdirectory name based on quantization type
if quant_type == "int8_weight_only":
subdir = "int8"
elif quant_type == "int4_weight_only":
subdir = "int4"
elif quant_type == "int8_dynamic":
subdir = "int8_dynamic"
else:
subdir = quant_type.replace("_", "-")
# Create repository if it doesn't exist
create_repo(
repo_id=self.repo_name,
token=self.token,
private=self.private,
exist_ok=True
)
# Create model card for the quantized version
model_card = self.create_quantized_model_card(quant_type, original_model, subdir)
model_card_path = Path(quantized_model_path) / "README.md"
with open(model_card_path, 'w', encoding='utf-8') as f:
f.write(model_card)
# Upload all files to subdirectory
logger.info(f"πŸ“€ Uploading quantized model files to {subdir}/ subdirectory...")
for file_path in Path(quantized_model_path).rglob("*"):
if file_path.is_file():
relative_path = file_path.relative_to(quantized_model_path)
# Upload to subdirectory within the repository
repo_path = f"{subdir}/{relative_path}"
upload_file(
path_or_fileobj=str(file_path),
path_in_repo=repo_path,
repo_id=self.repo_name,
token=self.token
)
logger.info(f"πŸ“€ Uploaded: {repo_path}")
logger.info(f"βœ… Quantized model pushed successfully to: https://huggingface.co/{self.repo_name}/{subdir}")
# Log to Trackio if available
if self.monitor:
self.monitor.log_metric("quantization_type", quant_type)
self.monitor.log_metric("quantized_model_url", f"https://huggingface.co/{self.repo_name}/{subdir}")
self.monitor.log_artifact("quantized_model_path", quantized_model_path)
return True
except Exception as e:
logger.error(f"❌ Failed to push quantized model: {e}")
return False
def log_to_trackio(self, action: str, details: Dict[str, Any]):
"""Log quantization events to Trackio"""
if self.monitor:
try:
self.monitor.log_event(action, details)
logger.info(f"πŸ“Š Logged to Trackio: {action}")
except Exception as e:
logger.warning(f"⚠️ Failed to log to Trackio: {e}")
def quantize_and_push(
self,
quant_type: str,
device: str = "auto",
group_size: int = 128
) -> bool:
"""Complete quantization and push workflow"""
try:
# Validate model path
if not self.validate_model_path():
return False
# Log start of quantization
self.log_to_trackio("quantization_started", {
"quant_type": quant_type,
"device": device,
"group_size": group_size,
"model_path": str(self.model_path)
})
# Quantize model
quantized_path = self.quantize_model(quant_type, device, group_size)
if not quantized_path:
return False
# Log successful quantization
self.log_to_trackio("quantization_completed", {
"quantized_path": quantized_path,
"quant_type": quant_type
})
# Push to HF Hub
original_model = str(self.model_path)
if not self.push_quantized_model(quantized_path, quant_type, original_model):
return False
# Log successful push
self.log_to_trackio("quantized_model_pushed", {
"repo_name": self.repo_name,
"quant_type": quant_type
})
logger.info(f"πŸŽ‰ Quantization and push completed successfully!")
logger.info(f"πŸ“Š Model: https://huggingface.co/{self.repo_name}")
return True
except Exception as e:
logger.error(f"❌ Quantization and push failed: {e}")
self.log_to_trackio("quantization_failed", {"error": str(e)})
return False
def parse_args():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(description="Quantize model using torchao")
parser.add_argument("model_path", help="Path to the trained model")
parser.add_argument("repo_name", help="Hugging Face repository name")
parser.add_argument("--quant-type", choices=["int8_weight_only", "int4_weight_only", "int8_dynamic"],
default="int8_weight_only", help="Quantization type")
parser.add_argument("--device", default="auto", help="Device for quantization (auto, cpu, cuda)")
parser.add_argument("--group-size", type=int, default=128, help="Group size for quantization")
parser.add_argument("--token", help="Hugging Face token")
parser.add_argument("--private", action="store_true", help="Create private repository")
parser.add_argument("--trackio-url", help="Trackio URL for monitoring")
parser.add_argument("--experiment-name", help="Experiment name for tracking")
parser.add_argument("--dataset-repo", help="HF Dataset repository")
return parser.parse_args()
def main():
"""Main function"""
args = parse_args()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
# Check torchao availability
if not TORCHAO_AVAILABLE:
logger.error("❌ torchao not available. Install with: pip install torchao")
return 1
# Initialize quantizer
quantizer = ModelQuantizer(
model_path=args.model_path,
repo_name=args.repo_name,
token=args.token,
private=args.private,
trackio_url=args.trackio_url,
experiment_name=args.experiment_name,
dataset_repo=args.dataset_repo
)
# Perform quantization and push
success = quantizer.quantize_and_push(
quant_type=args.quant_type,
device=args.device,
group_size=args.group_size
)
return 0 if success else 1
if __name__ == "__main__":
exit(main())