Spaces:
Running
Running
# Interactive SmolLM3 End-to-End Fine-tuning Pipeline | |
# This script creates a complete finetuning pipeline with user configuration | |
set -e # Exit on any error | |
# Colors for output | |
RED='\033[0;31m' | |
GREEN='\033[0;32m' | |
YELLOW='\033[1;33m' | |
BLUE='\033[0;34m' | |
PURPLE='\033[0;35m' | |
CYAN='\033[0;36m' | |
NC='\033[0m' # No Color | |
# Function to print colored output | |
print_status() { | |
echo -e "${GREEN}β $1${NC}" | |
} | |
print_warning() { | |
echo -e "${YELLOW}β οΈ $1${NC}" | |
} | |
print_error() { | |
echo -e "${RED}β $1${NC}" | |
} | |
print_info() { | |
echo -e "${BLUE}βΉοΈ $1${NC}" | |
} | |
print_header() { | |
echo -e "${PURPLE}π $1${NC}" | |
} | |
print_step() { | |
echo -e "${CYAN}π $1${NC}" | |
} | |
# Function to get user input with default value | |
get_input() { | |
local prompt="$1" | |
local default="$2" | |
local var_name="$3" | |
if [ -n "$default" ]; then | |
read -p "$prompt [$default]: " input | |
if [ -z "$input" ]; then | |
input="$default" | |
fi | |
else | |
read -p "$prompt: " input | |
while [ -z "$input" ]; do | |
print_error "This field is required!" | |
read -p "$prompt: " input | |
done | |
fi | |
eval "$var_name=\"$input\"" | |
} | |
# Function to select from options | |
select_option() { | |
local prompt="$1" | |
local options=("${@:2}") | |
local var_name="${!#}" | |
echo "$prompt" | |
for i in "${!options[@]}"; do | |
echo " $((i+1)). ${options[$i]}" | |
done | |
while true; do | |
read -p "Enter your choice (1-${#options[@]}): " choice | |
if [[ "$choice" =~ ^[0-9]+$ ]] && [ "$choice" -ge 1 ] && [ "$choice" -le "${#options[@]}" ]; then | |
eval "$var_name=\"${options[$((choice-1))]}\"" | |
break | |
else | |
print_error "Invalid choice. Please enter a number between 1 and ${#options[@]}" | |
fi | |
done | |
} | |
# Function to validate HF token and get username | |
validate_hf_token_and_get_username() { | |
local token="$1" | |
if [ -z "$token" ]; then | |
return 1 | |
fi | |
# Use Python script for validation | |
local result | |
if result=$(python3 scripts/validate_hf_token.py "$token" 2>/dev/null); then | |
# Parse JSON result using a more robust approach | |
local success=$(echo "$result" | python3 -c " | |
import sys, json | |
try: | |
data = json.load(sys.stdin) | |
print(data.get('success', False)) | |
except: | |
print('False') | |
") | |
local username=$(echo "$result" | python3 -c " | |
import sys, json | |
try: | |
data = json.load(sys.stdin) | |
print(data.get('username', '')) | |
except: | |
print('') | |
") | |
local error=$(echo "$result" | python3 -c " | |
import sys, json | |
try: | |
data = json.load(sys.stdin) | |
print(data.get('error', 'Unknown error')) | |
except: | |
print('Failed to parse response') | |
") | |
if [ "$success" = "True" ] && [ -n "$username" ]; then | |
HF_USERNAME="$username" | |
return 0 | |
else | |
print_error "Token validation failed: $error" | |
return 1 | |
fi | |
else | |
print_error "Failed to run token validation script. Make sure huggingface_hub is installed." | |
return 1 | |
fi | |
} | |
# Function to show training configurations | |
show_training_configs() { | |
echo "" | |
print_header "Available Training Configurations" | |
echo "======================================" | |
echo "" | |
echo "1. Basic Training (Default)" | |
echo " - Model: SmolLM3-3B" | |
echo " - Dataset: SmolTalk" | |
echo " - Epochs: 3" | |
echo " - Batch Size: 2" | |
echo " - Learning Rate: 5e-6" | |
echo "" | |
echo "2. H100 Lightweight (Rapid)" | |
echo " - Model: SmolLM3-3B" | |
echo " - Dataset: OpenHermes-FR (80K samples)" | |
echo " - Epochs: 1" | |
echo " - Batch Size: 16" | |
echo " - Learning Rate: 8e-6" | |
echo " - Sequence Length: 8192" | |
echo " - Optimized for H100 rapid training" | |
echo "" | |
echo "3. A100 Large Scale" | |
echo " - Model: SmolLM3-3B" | |
echo " - Dataset: OpenHermes-FR" | |
echo " - Epochs: 1.3 passes" | |
echo " - Batch Size: 8" | |
echo " - Learning Rate: 5e-6" | |
echo " - Sequence Length: 8192" | |
echo "" | |
echo "4. Multiple Passes" | |
echo " - Model: SmolLM3-3B" | |
echo " - Dataset: OpenHermes-FR" | |
echo " - Epochs: 4 passes" | |
echo " - Batch Size: 6" | |
echo " - Learning Rate: 3e-6" | |
echo " - Sequence Length: 8192" | |
echo "" | |
echo "5. Custom Configuration" | |
echo " - User-defined parameters" | |
echo "" | |
} | |
# Function to get training configuration | |
get_training_config() { | |
local config_type="$1" | |
case "$config_type" in | |
"Basic Training") | |
MODEL_NAME="HuggingFaceTB/SmolLM3-3B" | |
DATASET_NAME="legmlai/openhermes-fr" | |
MAX_EPOCHS=3 | |
BATCH_SIZE=2 | |
GRADIENT_ACCUMULATION_STEPS=8 | |
LEARNING_RATE=5e-6 | |
MAX_SEQ_LENGTH=4096 | |
CONFIG_FILE="config/train_smollm3.py" | |
;; | |
"H100 Lightweight (Rapid)") | |
MODEL_NAME="HuggingFaceTB/SmolLM3-3B" | |
DATASET_NAME="legmlai/openhermes-fr" | |
MAX_EPOCHS=1 | |
BATCH_SIZE=16 | |
GRADIENT_ACCUMULATION_STEPS=4 | |
LEARNING_RATE=8e-6 | |
MAX_SEQ_LENGTH=8192 | |
DATASET_SAMPLE_SIZE=80000 | |
CONFIG_FILE="config/train_smollm3_h100_lightweight.py" | |
;; | |
"A100 Large Scale") | |
MODEL_NAME="HuggingFaceTB/SmolLM3-3B" | |
DATASET_NAME="legmlai/openhermes-fr" | |
MAX_EPOCHS=1 | |
BATCH_SIZE=8 | |
GRADIENT_ACCUMULATION_STEPS=16 | |
LEARNING_RATE=5e-6 | |
MAX_SEQ_LENGTH=8192 | |
CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_large.py" | |
;; | |
"Multiple Passes") | |
MODEL_NAME="HuggingFaceTB/SmolLM3-3B" | |
DATASET_NAME="legmlai/openhermes-fr" | |
MAX_EPOCHS=4 | |
BATCH_SIZE=6 | |
GRADIENT_ACCUMULATION_STEPS=20 | |
LEARNING_RATE=3e-6 | |
MAX_SEQ_LENGTH=8192 | |
CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_multiple_passes.py" | |
;; | |
"Custom Configuration") | |
get_custom_config | |
;; | |
esac | |
} | |
# Function to get custom configuration | |
get_custom_config() { | |
print_step "Custom Configuration Setup" | |
echo "=============================" | |
get_input "Model name" "HuggingFaceTB/SmolLM3-3B" MODEL_NAME | |
get_input "Dataset name" "HuggingFaceTB/smoltalk" DATASET_NAME | |
get_input "Number of epochs" "3" MAX_EPOCHS | |
get_input "Batch size" "2" BATCH_SIZE | |
get_input "Gradient accumulation steps" "8" GRADIENT_ACCUMULATION_STEPS | |
get_input "Learning rate" "5e-6" LEARNING_RATE | |
get_input "Max sequence length" "4096" MAX_SEQ_LENGTH | |
# Select config file based on dataset | |
if [[ "$DATASET_NAME" == *"openhermes"* ]]; then | |
CONFIG_FILE="config/train_smollm3_openhermes_fr.py" | |
else | |
CONFIG_FILE="config/train_smollm3.py" | |
fi | |
} | |
# Function to create training configuration file | |
create_training_config() { | |
local config_file="$1" | |
cat > "$config_file" << EOF | |
""" | |
SmolLM3 Training Configuration - Generated by launch.sh | |
Optimized for: $TRAINING_CONFIG_TYPE | |
""" | |
from config.train_smollm3 import SmolLM3Config | |
config = SmolLM3Config( | |
# Trainer type selection | |
trainer_type="$TRAINER_TYPE", | |
# Model configuration | |
model_name="$MODEL_NAME", | |
max_seq_length=$MAX_SEQ_LENGTH, | |
use_flash_attention=True, | |
use_gradient_checkpointing=True, | |
# Training configuration | |
batch_size=$BATCH_SIZE, | |
gradient_accumulation_steps=$GRADIENT_ACCUMULATION_STEPS, | |
learning_rate=$LEARNING_RATE, | |
weight_decay=0.01, | |
warmup_steps=100, | |
max_iters=None, # Will be calculated based on epochs | |
eval_interval=100, | |
log_interval=10, | |
save_interval=500, | |
# Optimizer configuration | |
optimizer="adamw", | |
beta1=0.9, | |
beta2=0.95, | |
eps=1e-8, | |
# Scheduler configuration | |
scheduler="cosine", | |
min_lr=1e-6, | |
# Mixed precision | |
fp16=True, | |
bf16=False, | |
# Logging and saving | |
save_steps=$SAVE_STEPS, | |
eval_steps=$EVAL_STEPS, | |
logging_steps=$LOGGING_STEPS, | |
save_total_limit=3, | |
# Evaluation | |
eval_strategy="steps", | |
metric_for_best_model="eval_loss", | |
greater_is_better=False, | |
load_best_model_at_end=True, | |
# Data configuration | |
dataset_name="$DATASET_NAME", | |
dataset_split="train", | |
input_field="prompt", | |
target_field="completion", | |
filter_bad_entries=False, | |
bad_entry_field="bad_entry", | |
# Chat template configuration | |
use_chat_template=True, | |
chat_template_kwargs={ | |
"enable_thinking": False, | |
"add_generation_prompt": True, | |
"no_think_system_message": True | |
}, | |
# Trackio monitoring configuration | |
enable_tracking=True, | |
trackio_url="$TRACKIO_URL", | |
trackio_token=None, | |
log_artifacts=True, | |
log_metrics=True, | |
log_config=True, | |
experiment_name="$EXPERIMENT_NAME", | |
# HF Datasets configuration | |
dataset_repo="$TRACKIO_DATASET_REPO" | |
) | |
EOF | |
} | |
# Main script starts here | |
print_header "SmolLM3 End-to-End Fine-tuning Pipeline" | |
echo "==============================================" | |
echo "" | |
# Step 1: Get user credentials (only token needed now) | |
print_step "Step 1: User Authentication" | |
echo "================================" | |
get_input "Hugging Face token (get from https://huggingface.co/settings/tokens)" "" HF_TOKEN | |
# Validate HF token and get username automatically | |
print_info "Validating Hugging Face token and getting username..." | |
if validate_hf_token_and_get_username "$HF_TOKEN"; then | |
print_status "HF token validated successfully" | |
print_info "Username: $HF_USERNAME" | |
else | |
print_error "Invalid HF token. Please check your token and try again." | |
exit 1 | |
fi | |
# Step 2: Select training configuration | |
print_step "Step 2: Training Configuration" | |
echo "==================================" | |
show_training_configs | |
select_option "Select training configuration:" "Basic Training" "H100 Lightweight (Rapid)" "A100 Large Scale" "Multiple Passes" "Custom Configuration" TRAINING_CONFIG_TYPE | |
get_training_config "$TRAINING_CONFIG_TYPE" | |
# Step 3: Get experiment details | |
print_step "Step 3: Experiment Details" | |
echo "==============================" | |
get_input "Experiment name" "smollm3_finetune_$(date +%Y%m%d_%H%M%S)" EXPERIMENT_NAME | |
# Automatically generate model repository name | |
print_info "Setting up model repository automatically..." | |
REPO_NAME="$HF_USERNAME/smollm3-finetuned-$(date +%Y%m%d)" | |
print_status "Model repository: $REPO_NAME" | |
# Automatically create dataset repository | |
print_info "Setting up Trackio dataset repository automatically..." | |
# Set default dataset repository | |
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments" | |
# Ask if user wants to customize dataset name | |
echo "" | |
echo "Dataset repository options:" | |
echo "1. Use default name (trackio-experiments)" | |
echo "2. Customize dataset name" | |
echo "" | |
read -p "Choose option (1/2): " dataset_option | |
if [ "$dataset_option" = "2" ]; then | |
get_input "Custom dataset name (without username)" "trackio-experiments" CUSTOM_DATASET_NAME | |
if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" "$CUSTOM_DATASET_NAME" 2>/dev/null; then | |
# Update with the actual repository name from the script | |
TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
print_status "Custom dataset repository created successfully" | |
else | |
print_warning "Custom dataset creation failed, using default" | |
if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" 2>/dev/null; then | |
TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
print_status "Default dataset repository created successfully" | |
else | |
print_warning "Automatic dataset creation failed, using default" | |
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments" | |
fi | |
fi | |
else | |
if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" 2>/dev/null; then | |
TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
print_status "Dataset repository created successfully" | |
else | |
print_warning "Automatic dataset creation failed, using default" | |
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments" | |
fi | |
fi | |
# Ensure TRACKIO_DATASET_REPO is always set | |
if [ -z "$TRACKIO_DATASET_REPO" ]; then | |
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments" | |
print_warning "Dataset repository not set, using default: $TRACKIO_DATASET_REPO" | |
fi | |
# Step 3.5: Select trainer type | |
print_step "Step 3.5: Trainer Type Selection" | |
echo "====================================" | |
echo "Select the type of training to perform:" | |
echo "1. SFT (Supervised Fine-tuning) - Standard instruction tuning" | |
echo " - Uses SFTTrainer for instruction following" | |
echo " - Suitable for most fine-tuning tasks" | |
echo " - Optimized for instruction datasets" | |
echo "" | |
echo "2. DPO (Direct Preference Optimization) - Preference-based training" | |
echo " - Uses DPOTrainer for preference learning" | |
echo " - Requires preference datasets (chosen/rejected pairs)" | |
echo " - Optimizes for human preferences" | |
echo "" | |
select_option "Select trainer type:" "SFT" "DPO" TRAINER_TYPE | |
# Convert trainer type to lowercase for the training script | |
TRAINER_TYPE_LOWER=$(echo "$TRAINER_TYPE" | tr '[:upper:]' '[:lower:]') | |
# Step 4: Training parameters | |
print_step "Step 4: Training Parameters" | |
echo "===============================" | |
echo "Current configuration:" | |
echo " Model: $MODEL_NAME" | |
echo " Dataset: $DATASET_NAME" | |
echo " Trainer Type: $TRAINER_TYPE" | |
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then | |
echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}" | |
fi | |
echo " Epochs: $MAX_EPOCHS" | |
echo " Batch Size: $BATCH_SIZE" | |
echo " Gradient Accumulation: $GRADIENT_ACCUMULATION_STEPS" | |
echo " Learning Rate: $LEARNING_RATE" | |
echo " Sequence Length: $MAX_SEQ_LENGTH" | |
get_input "Save steps" "500" SAVE_STEPS | |
get_input "Evaluation steps" "100" EVAL_STEPS | |
get_input "Logging steps" "10" LOGGING_STEPS | |
# Step 5: Trackio Space configuration | |
print_step "Step 5: Trackio Space Configuration" | |
echo "======================================" | |
get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME | |
TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME" | |
# Step 6: Confirm configuration | |
print_step "Step 6: Configuration Summary" | |
echo "=================================" | |
echo "" | |
echo "π Configuration Summary:" | |
echo "========================" | |
echo " User: $HF_USERNAME (auto-detected from token)" | |
echo " Experiment: $EXPERIMENT_NAME" | |
echo " Model: $MODEL_NAME" | |
echo " Dataset: $DATASET_NAME" | |
echo " Training Config: $TRAINING_CONFIG_TYPE" | |
echo " Trainer Type: $TRAINER_TYPE" | |
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then | |
echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}" | |
fi | |
echo " Epochs: $MAX_EPOCHS" | |
echo " Batch Size: $BATCH_SIZE" | |
echo " Learning Rate: $LEARNING_RATE" | |
echo " Model Repo: $REPO_NAME (auto-generated)" | |
echo " Author: $AUTHOR_NAME" | |
echo " Trackio Space: $TRACKIO_URL" | |
echo " HF Dataset: $TRACKIO_DATASET_REPO" | |
echo "" | |
read -p "Proceed with this configuration? (y/N): " confirm | |
if [[ ! "$confirm" =~ ^[Yy]$ ]]; then | |
print_info "Configuration cancelled. Exiting." | |
exit 0 | |
fi | |
# Step 7: Environment setup | |
print_step "Step 7: Environment Setup" | |
echo "============================" | |
print_info "Installing system dependencies..." | |
# Check if we're already root or if sudo is available | |
if [ "$EUID" -eq 0 ]; then | |
# Already root, no need for sudo | |
print_info "Running as root, skipping sudo..." | |
apt-get update | |
apt-get install -y git curl wget unzip python3-pip python3-venv | |
elif command -v sudo >/dev/null 2>&1; then | |
# sudo is available, use it | |
print_info "Using sudo for system dependencies..." | |
sudo apt-get update | |
sudo apt-get install -y git curl wget unzip python3-pip python3-venv | |
else | |
# No sudo available, try without it | |
print_warning "sudo not available, attempting to install without sudo..." | |
if command -v apt-get >/dev/null 2>&1; then | |
apt-get update | |
apt-get install -y git curl wget unzip python3-pip python3-venv | |
else | |
print_warning "apt-get not available, skipping system dependencies..." | |
print_info "Please ensure git, curl, wget, unzip, python3-pip, and python3-venv are installed" | |
fi | |
fi | |
# Set environment variables before creating virtual environment | |
print_info "Setting up environment variables..." | |
export HF_TOKEN="$HF_TOKEN" | |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
print_info "Creating Python virtual environment..." | |
python3 -m venv smollm3_env | |
source smollm3_env/bin/activate | |
# Re-export environment variables in the virtual environment | |
print_info "Configuring environment variables in virtual environment..." | |
export HF_TOKEN="$HF_TOKEN" | |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
print_info "Installing PyTorch with CUDA support..." | |
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 | |
print_info "Installing project dependencies..." | |
pip install -r requirements/requirements_core.txt | |
print_info "Installing additional dependencies..." | |
pip install trl>=0.7.0 | |
pip install peft>=0.4.0 | |
pip install accelerate>=0.20.0 | |
pip install huggingface-hub>=0.16.0 | |
pip install datasets>=2.14.0 | |
pip install requests>=2.31.0 | |
# Step 8: Authentication setup | |
print_step "Step 8: Authentication Setup" | |
echo "================================" | |
print_info "Setting up Hugging Face token for Python API..." | |
print_status "HF token configured for Python API usage" | |
print_info "Username: $HF_USERNAME (auto-detected from token)" | |
print_info "Token available in environment: ${HF_TOKEN:0:10}...${HF_TOKEN: -4}" | |
# Verify token is available in the virtual environment | |
print_info "Verifying token availability in virtual environment..." | |
if [ -n "$HF_TOKEN" ] && [ -n "$HUGGING_FACE_HUB_TOKEN" ]; then | |
print_status "β Token properly configured in virtual environment" | |
print_info " HF_TOKEN: ${HF_TOKEN:0:10}...${HF_TOKEN: -4}" | |
print_info " HUGGING_FACE_HUB_TOKEN: ${HUGGING_FACE_HUB_TOKEN:0:10}...${HUGGING_FACE_HUB_TOKEN: -4}" | |
else | |
print_error "β Token not properly configured in virtual environment" | |
print_error "Please check your token and try again" | |
exit 1 | |
fi | |
# Configure git for HF operations | |
print_step "Step 8.1: Git Configuration" | |
echo "================================" | |
print_info "Configuring git for Hugging Face operations..." | |
# Get user's email for git configuration | |
get_input "Enter the email you used to register your account at huggingface for git configuration" "" GIT_EMAIL | |
# Configure git locally (not globally) for this project | |
git config user.email "$GIT_EMAIL" | |
git config user.name "$HF_USERNAME" | |
# Verify git configuration | |
print_info "Verifying git configuration..." | |
if git config user.email && git config user.name; then | |
print_status "Git configured successfully" | |
print_info " Email: $(git config user.email)" | |
print_info " Name: $(git config user.name)" | |
else | |
print_error "Failed to configure git" | |
exit 1 | |
fi | |
# Step 8.2: Author Information for Model Card | |
print_step "Step 8.2: Author Information" | |
echo "=================================" | |
print_info "This information will be used in the model card and citation." | |
get_input "Author name for model card" "$HF_USERNAME" AUTHOR_NAME | |
print_info "Model description will be used in the model card and repository." | |
get_input "Model description" "A fine-tuned version of SmolLM3-3B for improved french language text generation and conversation capabilities." MODEL_DESCRIPTION | |
# Step 9: Deploy Trackio Space (automated) | |
print_step "Step 9: Deploying Trackio Space" | |
echo "===================================" | |
cd scripts/trackio_tonic | |
print_info "Deploying Trackio Space ..." | |
print_info "Space name: $TRACKIO_SPACE_NAME" | |
print_info "Username will be auto-detected from token" | |
print_info "Secrets will be set automatically via API" | |
# Ensure environment variables are available for the script | |
export HF_TOKEN="$HF_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
# Run deployment script with automated features | |
python deploy_trackio_space.py "$TRACKIO_SPACE_NAME" "$HF_TOKEN" "$GIT_EMAIL" | |
print_status "Trackio Space deployed: $TRACKIO_URL" | |
# Step 10: Setup HF Dataset (automated) | |
print_step "Step 10: Setting up HF Dataset" | |
echo "==================================" | |
cd ../dataset_tonic | |
print_info "Setting up HF Dataset with automated features..." | |
print_info "Username will be auto-detected from token" | |
print_info "Dataset repository: $TRACKIO_DATASET_REPO" | |
# Ensure environment variables are available for the script | |
export HF_TOKEN="$HF_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
python setup_hf_dataset.py "$HF_TOKEN" | |
# Step 11: Configure Trackio (automated) | |
print_step "Step 11: Configuring Trackio" | |
echo "=================================" | |
cd ../trackio_tonic | |
print_info "Configuring Trackio ..." | |
print_info "Username will be auto-detected from token" | |
# Ensure environment variables are available for the script | |
export HF_TOKEN="$HF_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
python configure_trackio.py | |
# Step 12: Training Configuration | |
print_step "Step 12: Training Configuration" | |
echo "===================================" | |
cd ../.. | |
print_info "Using existing configuration file: $CONFIG_FILE" | |
# Step 13: Dataset Configuration | |
print_step "Step 13: Dataset Configuration" | |
echo "==================================" | |
print_info "Dataset will be loaded directly by src/data.py during training" | |
print_info "Dataset: $DATASET_NAME" | |
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then | |
print_info "Sample size: ${DATASET_SAMPLE_SIZE:-80000} (will be handled by data.py)" | |
fi | |
# Step 14: Training Parameters | |
print_step "Step 14: Training Parameters" | |
echo "================================" | |
print_info "Training parameters will be loaded from configuration file" | |
print_info "Model: $MODEL_NAME" | |
print_info "Dataset: $DATASET_NAME" | |
print_info "Batch size: $BATCH_SIZE" | |
print_info "Learning rate: $LEARNING_RATE" | |
# Step 15: Start training | |
print_step "Step 15: Starting Training" | |
echo "==============================" | |
print_info "Starting training with configuration: $CONFIG_FILE" | |
print_info "Experiment: $EXPERIMENT_NAME" | |
print_info "Output: /output-checkpoint" | |
print_info "Trackio: $TRACKIO_URL" | |
# Ensure environment variables are available for training | |
export HF_TOKEN="$HF_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
# Run the simpler training script | |
python scripts/training/train.py \ | |
--config "$CONFIG_FILE" \ | |
--experiment-name "$EXPERIMENT_NAME" \ | |
--output-dir /output-checkpoint \ | |
--trackio-url "$TRACKIO_URL" \ | |
--trainer-type "$TRAINER_TYPE_LOWER" | |
# Step 16: Push model to Hugging Face Hub | |
print_step "Step 16: Pushing Model to HF Hub" | |
echo "=====================================" | |
print_info "Pushing model to: $REPO_NAME" | |
print_info "Checkpoint: /output-checkpoint" | |
# Ensure environment variables are available for model push | |
export HF_TOKEN="$HF_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
# Run the push script | |
python scripts/model_tonic/push_to_huggingface.py /output-checkpoint "$REPO_NAME" \ | |
--token "$HF_TOKEN" \ | |
--trackio-url "$TRACKIO_URL" \ | |
--experiment-name "$EXPERIMENT_NAME" \ | |
--dataset-repo "$TRACKIO_DATASET_REPO" \ | |
--author-name "$AUTHOR_NAME" \ | |
--model-description "$MODEL_DESCRIPTION" | |
# Step 16.5: Quantization Options | |
print_step "Step 16.5: Model Quantization Options" | |
echo "==========================================" | |
print_info "Would you like to create quantized versions of your model?" | |
print_info "Quantization reduces model size and improves inference speed." | |
# Ask about quantization | |
get_input "Create quantized models? (y/n)" "y" "CREATE_QUANTIZED" | |
if [ "$CREATE_QUANTIZED" = "y" ] || [ "$CREATE_QUANTIZED" = "Y" ]; then | |
print_info "Quantization options:" | |
print_info "1. int8_weight_only (GPU optimized, ~50% memory reduction)" | |
print_info "2. int4_weight_only (CPU optimized, ~75% memory reduction)" | |
print_info "3. Both int8 and int4 versions" | |
select_option "Select quantization type:" "int8_weight_only" "int4_weight_only" "both" "QUANT_TYPE" | |
if [ "$QUANT_TYPE" = "both" ]; then | |
# Create both int8 and int4 versions in the same repository | |
print_info "Creating int8 (GPU) quantized model..." | |
# Ensure environment variables are available for quantization | |
export HF_TOKEN="$HF_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
python scripts/model_tonic/quantize_model.py /output-checkpoint "$REPO_NAME" \ | |
--quant-type "int8_weight_only" \ | |
--device "auto" \ | |
--token "$HF_TOKEN" \ | |
--trackio-url "$TRACKIO_URL" \ | |
--experiment-name "${EXPERIMENT_NAME}-int8" \ | |
--dataset-repo "$TRACKIO_DATASET_REPO" | |
print_info "Creating int4 (CPU) quantized model..." | |
# Ensure environment variables are available for quantization | |
export HF_TOKEN="$HF_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
python scripts/model_tonic/quantize_model.py /output-checkpoint "$REPO_NAME" \ | |
--quant-type "int4_weight_only" \ | |
--device "cpu" \ | |
--token "$HF_TOKEN" \ | |
--trackio-url "$TRACKIO_URL" \ | |
--experiment-name "${EXPERIMENT_NAME}-int4" \ | |
--dataset-repo "$TRACKIO_DATASET_REPO" | |
print_status "β Both quantized models created in the same repository:" | |
print_info "Main model: https://huggingface.co/$REPO_NAME" | |
print_info "int8 (GPU): https://huggingface.co/$REPO_NAME/int8" | |
print_info "int4 (CPU): https://huggingface.co/$REPO_NAME/int4" | |
else | |
# Create single quantized version in the same repository | |
print_info "Creating ${QUANT_TYPE} quantized model..." | |
DEVICE="auto" | |
if [ "$QUANT_TYPE" = "int4_weight_only" ]; then | |
DEVICE="cpu" | |
fi | |
# Ensure environment variables are available for quantization | |
export HF_TOKEN="$HF_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
python scripts/model_tonic/quantize_model.py /output-checkpoint "$REPO_NAME" \ | |
--quant-type "$QUANT_TYPE" \ | |
--device "$DEVICE" \ | |
--token "$HF_TOKEN" \ | |
--trackio-url "$TRACKIO_URL" \ | |
--experiment-name "${EXPERIMENT_NAME}-${QUANT_TYPE}" \ | |
--dataset-repo "$TRACKIO_DATASET_REPO" | |
print_status "β Quantized model created: https://huggingface.co/$REPO_NAME/${QUANT_TYPE//_/-}" | |
fi | |
else | |
print_info "Skipping quantization" | |
fi | |
# Step 17: Create summary report | |
print_step "Step 17: Creating Summary Report" | |
echo "====================================" | |
cat > training_summary.md << EOF | |
# SmolLM3 Fine-tuning Summary | |
## Configuration | |
- **Model**: $MODEL_NAME | |
- **Dataset**: $DATASET_NAME | |
- **Experiment**: $EXPERIMENT_NAME | |
- **Repository**: $REPO_NAME | |
- **Trackio Space**: $TRACKIO_URL | |
- **HF Dataset**: $TRACKIO_DATASET_REPO | |
- **Training Config**: $TRAINING_CONFIG_TYPE | |
- **Trainer Type**: $TRAINER_TYPE | |
$(if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then | |
echo "- **Dataset Sample Size**: ${DATASET_SAMPLE_SIZE:-80000}" | |
fi) | |
## Training Parameters | |
- **Batch Size**: $BATCH_SIZE | |
- **Gradient Accumulation**: $GRADIENT_ACCUMULATION_STEPS | |
- **Learning Rate**: $LEARNING_RATE | |
- **Max Epochs**: $MAX_EPOCHS | |
- **Sequence Length**: $MAX_SEQ_LENGTH | |
## Results | |
- **Model Repository**: https://huggingface.co/$REPO_NAME | |
- **Trackio Monitoring**: $TRACKIO_URL | |
- **Experiment Data**: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO | |
$(if [ "$CREATE_QUANTIZED" = "y" ] || [ "$CREATE_QUANTIZED" = "Y" ]; then | |
echo "- **Quantization**: $QUANT_TYPE" | |
if [ "$QUANT_TYPE" = "both" ]; then | |
echo "- **int8 Model (GPU)**: https://huggingface.co/$REPO_NAME/int8" | |
echo "- **int4 Model (CPU)**: https://huggingface.co/$REPO_NAME/int4" | |
else | |
echo "- **Quantized Model**: https://huggingface.co/$REPO_NAME/${QUANT_TYPE//_/-}" | |
fi | |
fi) | |
## Next Steps | |
1. Monitor training progress in your Trackio Space | |
2. Check the model repository on Hugging Face Hub | |
3. Use the model in your applications | |
4. Share your results with the community | |
## Files Created | |
- Training configuration: \`$CONFIG_FILE\` | |
- Model checkpoint: \`/output-checkpoint/\` | |
- Training logs: \`training.log\` | |
- Summary report: \`training_summary.md\` | |
EOF | |
print_status "Summary report saved to: training_summary.md" | |
# Final summary | |
echo "" | |
print_header "π End-to-End Pipeline Completed Successfully!" | |
echo "==================================================" | |
echo "" | |
echo "π Model: https://huggingface.co/$REPO_NAME" | |
echo "π Trackio: $TRACKIO_URL" | |
echo "π Experiment: $EXPERIMENT_NAME" | |
echo "π Dataset: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO" | |
$(if [ "$CREATE_QUANTIZED" = "y" ] || [ "$CREATE_QUANTIZED" = "Y" ]; then | |
echo "" | |
echo "π§ Quantized Models:" | |
if [ "$QUANT_TYPE" = "both" ]; then | |
echo " π int8 (GPU): https://huggingface.co/$REPO_NAME/int8" | |
echo " π int4 (CPU): https://huggingface.co/$REPO_NAME/int4" | |
else | |
echo " π $QUANT_TYPE: https://huggingface.co/$REPO_NAME/${QUANT_TYPE//_/-}" | |
fi | |
fi) | |
echo "" | |
echo "π Summary report saved to: training_summary.md" | |
echo "" | |
echo "π Next steps:" | |
echo "1. Monitor training progress in your Trackio Space" | |
echo "2. Check the model repository on Hugging Face Hub" | |
echo "3. Use the model in your applications" | |
echo "4. Share your results with the community" | |
echo "" | |
print_status "Pipeline completed successfully!" |