Spaces:
Running
Running
| """ | |
| SmolLM3 Training Configuration for OpenHermes-FR Dataset - Multiple Passes | |
| Optimized for A100 GPUs with multiple passes (3-5 epochs) on 800k+ datapoints | |
| """ | |
| import os | |
| from dataclasses import dataclass | |
| from typing import Optional | |
| from config.train_smollm3 import SmolLM3Config | |
| class SmolLM3ConfigOpenHermesFRMultiplePasses(SmolLM3Config): | |
| """Configuration for SmolLM3 fine-tuning with multiple passes on OpenHermes-FR dataset""" | |
| # Model configuration - optimized for A100 | |
| model_name: str = "HuggingFaceTB/SmolLM3-3B" | |
| max_seq_length: int = 8192 # Increased for better context understanding | |
| use_flash_attention: bool = True | |
| use_gradient_checkpointing: bool = False # Disabled for A100 efficiency | |
| # Training configuration - Multiple passes optimized | |
| batch_size: int = 6 # Slightly smaller for stability during long training | |
| gradient_accumulation_steps: int = 20 # Effective batch size = 6 * 20 = 120 | |
| learning_rate: float = 3e-6 # Conservative LR for multiple passes | |
| weight_decay: float = 0.01 | |
| warmup_steps: int = 2000 # Longer warmup for multiple passes | |
| max_iters: int = 25000 # 4 passes on 800k dataset (25k steps) | |
| eval_interval: int = 1000 # Less frequent evaluation | |
| log_interval: int = 50 # Less frequent logging | |
| save_interval: int = 2000 # Less frequent saving | |
| # Optimizer configuration - stability focused | |
| optimizer: str = "adamw_torch" | |
| beta1: float = 0.9 | |
| beta2: float = 0.999 # Higher beta2 for stability | |
| eps: float = 1e-8 | |
| # Scheduler configuration - longer training with multiple passes | |
| scheduler: str = "cosine" | |
| min_lr: float = 3e-7 # Lower min LR | |
| # Mixed precision - A100 optimized | |
| fp16: bool = False # Use bf16 for A100 | |
| bf16: bool = True # Better for A100 | |
| # DDP configuration | |
| ddp_backend: str = "nccl" | |
| ddp_find_unused_parameters: bool = False | |
| # Logging and saving - optimized for long training | |
| save_steps: int = 2000 | |
| eval_steps: int = 1000 | |
| logging_steps: int = 50 | |
| save_total_limit: Optional[int] = 8 # Keep more checkpoints for long training | |
| # Evaluation | |
| eval_strategy: str = "steps" | |
| metric_for_best_model: str = "eval_loss" | |
| greater_is_better: bool = False | |
| load_best_model_at_end: bool = True | |
| # OpenHermes-FR Dataset configuration | |
| dataset_name: str = "legmlai/openhermes-fr" | |
| dataset_split: str = "train" | |
| input_field: str = "prompt" | |
| target_field: str = "accepted_completion" | |
| filter_bad_entries: bool = True | |
| bad_entry_field: str = "bad_entry" | |
| # Data configuration (not used for HF datasets but kept for compatibility) | |
| data_dir: str = None | |
| train_file: str = None | |
| validation_file: Optional[str] = None | |
| test_file: Optional[str] = None | |
| # Chat template configuration | |
| use_chat_template: bool = True | |
| chat_template_kwargs: dict = None | |
| # Trackio monitoring configuration | |
| enable_tracking: bool = True | |
| trackio_url: Optional[str] = None | |
| trackio_token: Optional[str] = None | |
| log_artifacts: bool = True | |
| log_metrics: bool = True | |
| log_config: bool = True | |
| experiment_name: Optional[str] = None | |
| # Additional A100 optimizations | |
| dataloader_num_workers: int = 8 # More workers for faster data loading | |
| dataloader_pin_memory: bool = True | |
| dataloader_prefetch_factor: int = 2 | |
| # Memory optimizations | |
| max_grad_norm: float = 1.0 # Gradient clipping | |
| group_by_length: bool = True # Group similar length sequences | |
| # Training duration calculations | |
| # With 800k datapoints and effective batch size of 120: | |
| # Steps per epoch = 800,000 / 120 = 6,667 steps | |
| # For 3 passes: 6,667 * 3 = 20,000 steps | |
| # For 4 passes: 6,667 * 4 = 26,667 steps | |
| # For 5 passes: 6,667 * 5 = 33,333 steps | |
| # Current max_iters = 25,000 (about 3.75 passes) | |
| def __post_init__(self): | |
| if self.chat_template_kwargs is None: | |
| self.chat_template_kwargs = { | |
| "add_generation_prompt": True, | |
| "no_think_system_message": True # Set to True to add /no_think tag | |
| } | |
| # Validate configuration | |
| if self.fp16 and self.bf16: | |
| raise ValueError("Cannot use both fp16 and bf16") | |
| if self.max_seq_length > 131072: # 128k limit | |
| raise ValueError("max_seq_length cannot exceed 131072") | |
| # Calculate training statistics | |
| effective_batch_size = self.batch_size * self.gradient_accumulation_steps | |
| steps_per_epoch = 800000 // effective_batch_size # Approximate for 800k dataset | |
| epochs_for_max_iters = self.max_iters / steps_per_epoch | |
| print(f"=== Multiple Passes Training Configuration ===") | |
| print(f"Effective batch size: {effective_batch_size}") | |
| print(f"Steps per epoch: ~{steps_per_epoch}") | |
| print(f"Training for ~{epochs_for_max_iters:.1f} epochs") | |
| print(f"Total training steps: {self.max_iters}") | |
| print(f"Learning rate: {self.learning_rate}") | |
| print(f"Mixed precision: {'bf16' if self.bf16 else 'fp16'}") | |
| print(f"Max sequence length: {self.max_seq_length}") | |
| print(f"Gradient checkpointing: {self.use_gradient_checkpointing}") | |
| print(f"Warmup steps: {self.warmup_steps}") | |
| print(f"Save interval: {self.save_interval}") | |
| print("=" * 50) | |
| # Set default experiment name if not provided | |
| if self.experiment_name is None: | |
| self.experiment_name = "smollm3_openhermes_fr_multiple_passes" | |
| def get_config(config_path: str) -> SmolLM3ConfigOpenHermesFRMultiplePasses: | |
| """Load configuration from file or return default""" | |
| if os.path.exists(config_path): | |
| # Load from file if it exists | |
| import importlib.util | |
| spec = importlib.util.spec_from_file_location("config_module", config_path) | |
| config_module = importlib.util.module_from_spec(spec) | |
| spec.loader.exec_module(config_module) | |
| if hasattr(config_module, 'config'): | |
| return config_module.config | |
| else: | |
| # Try to find a config class | |
| for attr_name in dir(config_module): | |
| attr = getattr(config_module, attr_name) | |
| if isinstance(attr, SmolLM3ConfigOpenHermesFRMultiplePasses): | |
| return attr | |
| # Return default configuration | |
| return SmolLM3ConfigOpenHermesFRMultiplePasses() | |
| # Default configuration instance | |
| config = SmolLM3ConfigOpenHermesFRMultiplePasses() |