SmolFactory / src /monitoring.py
Tonic's picture
adds single token logic read/write , adds gpt-oss demo space , adds spaces refactor , adds new version of track tonic , adds logic in launch.sh
75bcdb3
raw
history blame
27.1 kB
"""
Trackio Monitoring Integration for SmolLM3 Fine-tuning
Provides comprehensive experiment tracking and monitoring capabilities with HF Datasets support
"""
import os
import json
import logging
from typing import Dict, Any, Optional, List
from datetime import datetime
import torch
from pathlib import Path
# Import the real API client
try:
from scripts.trackio_tonic.trackio_api_client import TrackioAPIClient
TRACKIO_AVAILABLE = True
except ImportError:
TrackioAPIClient = None
TRACKIO_AVAILABLE = False
print("Warning: Trackio API client not available. Install with: pip install requests")
# Check if there's a conflicting trackio package installed
try:
import trackio
print(f"Warning: Found installed trackio package at {trackio.__file__}")
print("This may conflict with our custom TrackioAPIClient. Using custom implementation only.")
except ImportError:
pass # No conflicting package found
logger = logging.getLogger(__name__)
class SmolLM3Monitor:
"""Monitoring and tracking for SmolLM3 fine-tuning experiments with HF Datasets support"""
def __init__(
self,
experiment_name: str,
trackio_url: Optional[str] = None,
trackio_token: Optional[str] = None,
enable_tracking: bool = True,
log_artifacts: bool = True,
log_metrics: bool = True,
log_config: bool = True,
hf_token: Optional[str] = None,
dataset_repo: Optional[str] = None
):
self.experiment_name = experiment_name
self.enable_tracking = enable_tracking and TRACKIO_AVAILABLE
self.log_artifacts = log_artifacts
self.log_metrics_enabled = log_metrics # Rename to avoid conflict
self.log_config_enabled = log_config # Rename to avoid conflict
# HF Datasets configuration
self.hf_token = hf_token or os.environ.get('HF_TOKEN')
self.dataset_repo = dataset_repo or os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
# Ensure dataset repository is properly set
if not self.dataset_repo or self.dataset_repo.strip() == '':
logger.warning("⚠️ Dataset repository not set, using default")
self.dataset_repo = 'tonic/trackio-experiments'
# Initialize experiment metadata first
self.experiment_id = None
self.start_time = datetime.now()
self.metrics_history = []
self.artifacts = []
# Initialize Trackio API client
self.trackio_client = None
if self.enable_tracking:
self._setup_trackio(trackio_url, trackio_token)
# Initialize HF Datasets client
self.hf_dataset_client = None
if self.hf_token:
self._setup_hf_datasets()
logger.info("Initialized monitoring for experiment: %s", experiment_name)
logger.info("Dataset repository: %s", self.dataset_repo)
# Create experiment in Trackio if tracking is enabled
if self.enable_tracking and self.trackio_client:
self._create_experiment()
def _setup_hf_datasets(self):
"""Setup HF Datasets client for persistent storage"""
try:
from datasets import Dataset
from huggingface_hub import HfApi
try:
from .dataset_utils import create_dataset_manager
except ImportError:
# Try importing from same directory
import sys
import os
sys.path.insert(0, os.path.dirname(__file__))
from dataset_utils import create_dataset_manager
self.hf_dataset_client = {
'Dataset': Dataset,
'HfApi': HfApi,
'api': HfApi(token=self.hf_token)
}
# Initialize dataset manager for safe operations
self.dataset_manager = create_dataset_manager(self.dataset_repo, self.hf_token)
logger.info("βœ… HF Datasets client and manager initialized for %s", self.dataset_repo)
except ImportError:
logger.warning("⚠️ datasets or huggingface-hub not available. Install with: pip install datasets huggingface-hub")
self.hf_dataset_client = None
self.dataset_manager = None
except Exception as e:
logger.error("Failed to initialize HF Datasets client: %s", e)
self.hf_dataset_client = None
self.dataset_manager = None
def _setup_trackio(self, trackio_url: Optional[str], trackio_token: Optional[str]):
"""Setup Trackio API client"""
try:
# Get Trackio configuration from environment or parameters
space_id = trackio_url or os.getenv('TRACKIO_SPACE_ID')
if not space_id:
# Use the deployed Trackio Space ID
space_id = "Tonic/trackio-monitoring-20250727"
logger.info(f"Using default Trackio Space ID: {space_id}")
# Get HF token for Space resolution
hf_token = self.hf_token or trackio_token or os.getenv('HF_TOKEN')
self.trackio_client = TrackioAPIClient(space_id, hf_token)
# Test connection to Trackio Space
try:
# Test connection first
connection_test = self.trackio_client.test_connection()
if connection_test.get('error'):
logger.warning(f"Trackio Space not accessible: {connection_test['error']}")
logger.info("Continuing with HF Datasets only")
self.enable_tracking = False
return
logger.info("βœ… Trackio Space connection successful")
except Exception as e:
logger.warning(f"Trackio Space not accessible: {e}")
logger.info("Continuing with HF Datasets only")
self.enable_tracking = False
return
except Exception as e:
logger.error(f"Failed to setup Trackio: {e}")
self.enable_tracking = False
def _create_experiment(self):
"""Create experiment in Trackio and set experiment_id"""
try:
if not self.trackio_client:
logger.warning("Trackio client not available, skipping experiment creation")
return
# Create experiment with timestamp to ensure uniqueness
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
experiment_name = f"{self.experiment_name}_{timestamp}"
result = self.trackio_client.create_experiment(
name=experiment_name,
description=f"SmolLM3 fine-tuning experiment: {self.experiment_name}"
)
if result.get('success'):
# Extract experiment ID from the response
response_data = result.get('data', '')
if 'ID: ' in response_data:
# Extract ID from response like "βœ… Experiment created successfully!\nID: exp_20250727_151252\nName: test_experiment_api_fix\nStatus: running"
lines = response_data.split('\n')
for line in lines:
if line.startswith('ID: '):
self.experiment_id = line.replace('ID: ', '').strip()
break
if not self.experiment_id:
# Fallback: generate experiment ID
self.experiment_id = f"exp_{timestamp}"
logger.info(f"βœ… Experiment created successfully: {self.experiment_id}")
else:
logger.warning(f"Failed to create experiment: {result}")
# Fallback: generate experiment ID
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
self.experiment_id = f"exp_{timestamp}"
except Exception as e:
logger.error(f"Failed to create experiment: {e}")
# Fallback: generate experiment ID
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
self.experiment_id = f"exp_{timestamp}"
def _save_to_hf_dataset(self, experiment_data: Dict[str, Any]):
"""Save experiment data to HF Dataset with data preservation using dataset manager"""
if not self.dataset_manager:
logger.warning("⚠️ Dataset manager not available")
return False
try:
# Prepare current experiment data with standardized structure
current_experiment = {
'experiment_id': self.experiment_id or f"exp_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
'name': self.experiment_name,
'description': "SmolLM3 fine-tuning experiment",
'created_at': self.start_time.isoformat(),
'status': 'running',
'metrics': json.dumps(self.metrics_history, default=str),
'parameters': json.dumps(experiment_data, default=str),
'artifacts': json.dumps(self.artifacts, default=str),
'logs': json.dumps([], default=str),
'last_updated': datetime.now().isoformat()
}
# Use dataset manager to safely upsert the experiment
success = self.dataset_manager.upsert_experiment(current_experiment)
if success:
logger.info(f"βœ… Experiment data saved to HF Dataset: {self.dataset_repo}")
return True
else:
logger.error(f"❌ Failed to save experiment data to HF Dataset")
return False
except Exception as e:
logger.error(f"❌ Failed to save to HF Dataset: {e}")
return False
def log_configuration(self, config: Dict[str, Any]):
"""Log experiment configuration"""
if not self.enable_tracking or not self.log_config_enabled:
return
try:
# Log configuration as parameters
if self.trackio_client:
try:
result = self.trackio_client.log_parameters(
experiment_id=self.experiment_id,
parameters=config
)
if "success" in result:
logger.info("Configuration logged to Trackio")
else:
logger.warning("Failed to log configuration to Trackio: %s", result)
except Exception as e:
logger.warning("Trackio configuration logging failed: %s", e)
# Save to HF Dataset
self._save_to_hf_dataset(config)
# Also save config locally
config_path = "config_{}_{}.json".format(
self.experiment_name,
self.start_time.strftime('%Y%m%d_%H%M%S')
)
with open(config_path, 'w') as f:
json.dump(config, f, indent=2, default=str)
self.artifacts.append(config_path)
logger.info("Configuration saved to %s", config_path)
except Exception as e:
logger.error("Failed to log configuration: %s", e)
def log_config(self, config: Dict[str, Any]):
"""Alias for log_configuration for backward compatibility"""
return self.log_configuration(config)
def log_metrics(self, metrics: Dict[str, Any], step: Optional[int] = None):
"""
Log training metrics. Supports advanced metrics such as:
- total_tokens, truncated_tokens, padding_tokens
- throughput, step_time, batch_size, seq_len
- token_acc, train/gate_ortho, train/center, etc.
"""
if not self.enable_tracking or not self.log_metrics_enabled:
return
try:
# Add timestamp
metrics['timestamp'] = datetime.now().isoformat()
if step is not None:
metrics['step'] = step
# Log to Trackio (if available)
if self.trackio_client:
try:
result = self.trackio_client.log_metrics(
experiment_id=self.experiment_id,
metrics=metrics,
step=step
)
if "success" in result:
logger.debug("Metrics logged to Trackio")
else:
logger.warning("Failed to log metrics to Trackio: %s", result)
except Exception as e:
logger.warning("Trackio logging failed: %s", e)
# Store locally
self.metrics_history.append(metrics)
# Save to HF Dataset periodically
if len(self.metrics_history) % 10 == 0: # Save every 10 metrics
self._save_to_hf_dataset({'metrics': self.metrics_history})
logger.debug("Metrics logged: %s", metrics)
except Exception as e:
logger.error("Failed to log metrics: %s", e)
def log_model_checkpoint(self, checkpoint_path: str, step: Optional[int] = None):
"""Log model checkpoint"""
if not self.enable_tracking or not self.log_artifacts:
return
try:
# For now, just log the checkpoint path as a parameter
# The actual file upload would need additional API endpoints
checkpoint_info = {
"checkpoint_path": checkpoint_path,
"checkpoint_step": step,
"checkpoint_size": os.path.getsize(checkpoint_path) if os.path.exists(checkpoint_path) else 0
}
if self.trackio_client:
result = self.trackio_client.log_parameters(
experiment_id=self.experiment_id,
parameters=checkpoint_info
)
if "success" in result:
logger.info("Checkpoint logged to Trackio")
else:
logger.error("Failed to log checkpoint to Trackio: %s", result)
self.artifacts.append(checkpoint_path)
logger.info("Checkpoint logged: %s", checkpoint_path)
except Exception as e:
logger.error("Failed to log checkpoint: %s", e)
def log_evaluation_results(self, results: Dict[str, Any], step: Optional[int] = None):
"""Log evaluation results"""
if not self.enable_tracking:
return
try:
# Add evaluation prefix to metrics
eval_metrics = {f"eval_{k}": v for k, v in results.items()}
self.log_metrics(eval_metrics, step)
# Save evaluation results locally
eval_path = "eval_results_step_{}_{}.json".format(
step or "unknown",
self.start_time.strftime('%Y%m%d_%H%M%S')
)
with open(eval_path, 'w') as f:
json.dump(results, f, indent=2, default=str)
self.artifacts.append(eval_path)
logger.info("Evaluation results logged and saved to %s", eval_path)
except Exception as e:
logger.error("Failed to log evaluation results: %s", e)
def log_system_metrics(self, step: Optional[int] = None):
"""Log system metrics (GPU, memory, etc.)"""
if not self.enable_tracking:
return
try:
system_metrics = {}
# GPU metrics
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
system_metrics['gpu_{}_memory_allocated'.format(i)] = torch.cuda.memory_allocated(i) / 1024**3 # GB
system_metrics['gpu_{}_memory_reserved'.format(i)] = torch.cuda.memory_reserved(i) / 1024**3 # GB
system_metrics['gpu_{}_utilization'.format(i)] = torch.cuda.utilization(i) if hasattr(torch.cuda, 'utilization') else 0
# CPU and memory metrics (basic)
try:
import psutil
system_metrics['cpu_percent'] = psutil.cpu_percent()
system_metrics['memory_percent'] = psutil.virtual_memory().percent
except ImportError:
logger.warning("psutil not available, skipping CPU/memory metrics")
self.log_metrics(system_metrics, step)
except Exception as e:
logger.error("Failed to log system metrics: %s", e)
def log_training_summary(self, summary: Dict[str, Any]):
"""Log training summary at the end"""
if not self.enable_tracking:
return
try:
# Add experiment duration
end_time = datetime.now()
duration = (end_time - self.start_time).total_seconds()
summary['experiment_duration_seconds'] = duration
summary['experiment_duration_hours'] = duration / 3600
# Log final summary to Trackio
if self.trackio_client:
result = self.trackio_client.log_parameters(
experiment_id=self.experiment_id,
parameters=summary
)
if "success" in result:
logger.info("Training summary logged to Trackio")
else:
logger.error("Failed to log training summary to Trackio: %s", result)
# Save to HF Dataset
self._save_to_hf_dataset(summary)
# Save summary locally
summary_path = "training_summary_{}_{}.json".format(
self.experiment_name,
self.start_time.strftime('%Y%m%d_%H%M%S')
)
with open(summary_path, 'w') as f:
json.dump(summary, f, indent=2, default=str)
self.artifacts.append(summary_path)
logger.info("Training summary logged and saved to %s", summary_path)
except Exception as e:
logger.error("Failed to log training summary: %s", e)
def create_monitoring_callback(self):
"""Create a callback for integration with Hugging Face Trainer"""
from transformers import TrainerCallback
class TrackioCallback(TrainerCallback):
"""
Trainer callback for logging metrics, including advanced metrics:
- total_tokens, truncated_tokens, padding_tokens
- throughput, step_time, batch_size, seq_len
- token_acc, train/gate_ortho, train/center, etc.
"""
def __init__(self, monitor):
super().__init__()
self.monitor = monitor
logger.info("TrackioCallback initialized")
self.last_step_time = None
def on_init_end(self, args, state, control, **kwargs):
"""Called when training initialization is complete"""
try:
logger.info("Training initialization completed")
except Exception as e:
logger.error("Error in on_init_end: %s", e)
def on_log(self, args, state, control, logs=None, **kwargs):
"""Called when logs are created"""
import time
try:
step = getattr(state, 'global_step', None)
# Timing and throughput
now = time.time()
if self.last_step_time is not None:
step_time = now - self.last_step_time
logs['step_time'] = step_time
# Throughput: tokens/sec if total_tokens is available
if hasattr(self, 'last_total_tokens') and self.last_total_tokens is not None:
throughput = (logs.get('total_tokens', 0) / step_time) if step_time > 0 else 0
logs['throughput'] = throughput
self.last_step_time = now
# Token stats from batch (if available in kwargs)
batch = kwargs.get('inputs', None)
if batch is not None:
for key in ['total_tokens', 'padding_tokens', 'truncated_tokens', 'batch_size', 'seq_len']:
if key in batch:
logs[key] = batch[key]
self.last_total_tokens = batch.get('total_tokens', None)
else:
self.last_total_tokens = None
# Token accuracy (if possible)
if 'labels' in logs and 'predictions' in logs:
labels = logs['labels']
preds = logs['predictions']
if hasattr(labels, 'shape') and hasattr(preds, 'shape'):
correct = (preds == labels).sum().item()
total = labels.numel()
logs['token_acc'] = correct / total if total > 0 else 0.0
self.monitor.log_metrics(logs, step)
self.monitor.log_system_metrics(step)
except Exception as e:
logger.error("Error in on_log: %s", e)
def on_save(self, args, state, control, **kwargs):
"""Called when a checkpoint is saved"""
try:
step = getattr(state, 'global_step', None)
if step is not None:
checkpoint_path = os.path.join(args.output_dir, "checkpoint-{}".format(step))
if os.path.exists(checkpoint_path):
self.monitor.log_model_checkpoint(checkpoint_path, step)
except Exception as e:
logger.error("Error in on_save: %s", e)
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
"""Called when evaluation is performed"""
try:
if metrics and isinstance(metrics, dict):
step = getattr(state, 'global_step', None)
self.monitor.log_evaluation_results(metrics, step)
except Exception as e:
logger.error("Error in on_evaluate: %s", e)
def on_train_begin(self, args, state, control, **kwargs):
"""Called when training begins"""
try:
logger.info("Training started")
except Exception as e:
logger.error("Error in on_train_begin: %s", e)
def on_train_end(self, args, state, control, **kwargs):
"""Called when training ends"""
try:
logger.info("Training completed")
if self.monitor:
self.monitor.close()
except Exception as e:
logger.error("Error in on_train_end: %s", e)
callback = TrackioCallback(self)
logger.info("TrackioCallback created successfully")
return callback
def get_experiment_url(self) -> Optional[str]:
"""Get the URL to view the experiment in Trackio"""
if self.trackio_client and self.experiment_id:
return "{}?tab=view_experiments".format(self.trackio_client.space_url)
return None
def close(self, final_status: str = "completed"):
"""
Close the monitoring session with final status update
Args:
final_status (str): Final status for the experiment (completed, failed, etc.)
"""
logger.info(f"πŸ”š Closing monitoring session with status: {final_status}")
if self.enable_tracking and self.trackio_client:
try:
# Mark experiment as completed in Trackio
result = self.trackio_client.update_experiment_status(
experiment_id=self.experiment_id,
status=final_status
)
if "success" in result:
logger.info("βœ… Trackio monitoring session closed")
else:
logger.error("❌ Failed to close Trackio monitoring session: %s", result)
except Exception as e:
logger.error("❌ Failed to close Trackio monitoring session: %s", e)
# Final save to HF Dataset with proper status update
if self.dataset_manager:
try:
# Update experiment with final status
final_experiment_data = {
'status': final_status,
'experiment_end_time': datetime.now().isoformat(),
'final_metrics_count': len(self.metrics_history),
'total_artifacts': len(self.artifacts)
}
success = self._save_to_hf_dataset(final_experiment_data)
if success:
logger.info("βœ… Final experiment data saved to HF Dataset")
else:
logger.error("❌ Failed to save final experiment data")
except Exception as e:
logger.error(f"❌ Failed to save final experiment data: {e}")
logger.info(f"🎯 Monitoring session closed for experiment: {self.experiment_id}")
# Utility function to create monitor from config
def create_monitor_from_config(config, experiment_name: Optional[str] = None) -> SmolLM3Monitor:
"""Create a monitor instance from configuration"""
if experiment_name is None:
experiment_name = getattr(config, 'experiment_name', 'smollm3_experiment')
return SmolLM3Monitor(
experiment_name=experiment_name,
trackio_url=getattr(config, 'trackio_url', None),
trackio_token=getattr(config, 'trackio_token', None),
enable_tracking=getattr(config, 'enable_tracking', True),
log_artifacts=getattr(config, 'log_artifacts', True),
log_metrics=getattr(config, 'log_metrics', True),
log_config=getattr(config, 'log_config', True),
hf_token=getattr(config, 'hf_token', None),
dataset_repo=getattr(config, 'dataset_repo', None)
)