Spaces:
Running
Running
| #!/usr/bin/env python3 | |
| """ | |
| Quantize Trained Model using torchao | |
| Supports int8 (GPU) and int4 (CPU) quantization with Hugging Face Hub integration | |
| """ | |
| import os | |
| import json | |
| import argparse | |
| import logging | |
| from pathlib import Path | |
| from typing import Dict, Any, Optional, List, Union | |
| from datetime import datetime | |
| import subprocess | |
| import shutil | |
| import platform | |
| try: | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig | |
| from torchao.quantization import ( | |
| Int8WeightOnlyConfig, | |
| Int4WeightOnlyConfig, | |
| Int8DynamicActivationInt8WeightConfig | |
| ) | |
| from torchao.dtypes import Int4CPULayout | |
| TORCHAO_AVAILABLE = True | |
| except ImportError: | |
| TORCHAO_AVAILABLE = False | |
| print("Warning: torchao not available. Install with: pip install torchao") | |
| try: | |
| from huggingface_hub import HfApi, create_repo, upload_file | |
| from huggingface_hub import snapshot_download, hf_hub_download | |
| HF_AVAILABLE = True | |
| except ImportError: | |
| HF_AVAILABLE = False | |
| print("Warning: huggingface_hub not available. Install with: pip install huggingface_hub") | |
| try: | |
| import sys | |
| import os | |
| sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', 'src')) | |
| from monitoring import SmolLM3Monitor | |
| MONITORING_AVAILABLE = True | |
| except ImportError: | |
| MONITORING_AVAILABLE = False | |
| print("Warning: monitoring module not available") | |
| logger = logging.getLogger(__name__) | |
| class ModelQuantizer: | |
| """Quantize models using torchao with HF Hub integration""" | |
| def __init__( | |
| self, | |
| model_path: str, | |
| repo_name: str, | |
| token: Optional[str] = None, | |
| private: bool = False, | |
| trackio_url: Optional[str] = None, | |
| experiment_name: Optional[str] = None, | |
| dataset_repo: Optional[str] = None, | |
| hf_token: Optional[str] = None | |
| ): | |
| self.model_path = Path(model_path) | |
| self.repo_name = repo_name | |
| self.token = token or hf_token or os.getenv('HF_TOKEN') | |
| self.private = private | |
| self.trackio_url = trackio_url | |
| self.experiment_name = experiment_name | |
| # HF Datasets configuration | |
| self.dataset_repo = dataset_repo or os.getenv('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments') | |
| self.hf_token = hf_token or os.getenv('HF_TOKEN') | |
| # Initialize HF API | |
| if HF_AVAILABLE: | |
| self.api = HfApi(token=self.token) | |
| else: | |
| raise ImportError("huggingface_hub is required. Install with: pip install huggingface_hub") | |
| # Initialize monitoring if available | |
| self.monitor = None | |
| if MONITORING_AVAILABLE: | |
| self.monitor = SmolLM3Monitor( | |
| experiment_name=experiment_name or "model_quantization", | |
| trackio_url=trackio_url, | |
| enable_tracking=bool(trackio_url), | |
| hf_token=self.hf_token, | |
| dataset_repo=self.dataset_repo | |
| ) | |
| logger.info(f"Initialized ModelQuantizer for {repo_name}") | |
| logger.info(f"Dataset repository: {self.dataset_repo}") | |
| def validate_model_path(self) -> bool: | |
| """Validate that the model path exists and contains required files""" | |
| if not self.model_path.exists(): | |
| logger.error(f"β Model path does not exist: {self.model_path}") | |
| return False | |
| # Check for essential model files | |
| required_files = ['config.json'] | |
| # Check for model files (either safetensors or pytorch) | |
| model_files = [ | |
| "model.safetensors.index.json", # Safetensors format | |
| "pytorch_model.bin" # PyTorch format | |
| ] | |
| missing_required = [] | |
| for file in required_files: | |
| if not (self.model_path / file).exists(): | |
| missing_required.append(file) | |
| # Check if at least one model file exists | |
| model_file_exists = any((self.model_path / file).exists() for file in model_files) | |
| if not model_file_exists: | |
| missing_required.extend(model_files) | |
| if missing_required: | |
| logger.error(f"β Missing required model files: {missing_required}") | |
| return False | |
| logger.info(f"β Model path validated: {self.model_path}") | |
| return True | |
| def create_quantization_config(self, quant_type: str, group_size: int = 128) -> TorchAoConfig: | |
| """Create torchao quantization configuration""" | |
| if not TORCHAO_AVAILABLE: | |
| raise ImportError("torchao is required. Install with: pip install torchao") | |
| if quant_type == "int8_weight_only": | |
| quant_config = Int8WeightOnlyConfig(group_size=group_size) | |
| elif quant_type == "int4_weight_only": | |
| # For int4, we need to specify CPU layout | |
| quant_config = Int4WeightOnlyConfig(group_size=group_size, layout=Int4CPULayout()) | |
| elif quant_type == "int8_dynamic": | |
| quant_config = Int8DynamicActivationInt8WeightConfig() | |
| else: | |
| raise ValueError(f"Unsupported quantization type: {quant_type}") | |
| return TorchAoConfig(quant_type=quant_config) | |
| def get_optimal_device(self, quant_type: str) -> str: | |
| """Get optimal device for quantization type""" | |
| if quant_type == "int4_weight_only": | |
| # Int4 quantization works better on CPU | |
| return "cpu" | |
| elif quant_type == "int8_weight_only": | |
| # Int8 quantization works on GPU | |
| if torch.cuda.is_available(): | |
| return "cuda" | |
| else: | |
| logger.warning("β οΈ CUDA not available, falling back to CPU for int8") | |
| return "cpu" | |
| else: | |
| return "auto" | |
| def quantize_model_alternative( | |
| self, | |
| quant_type: str, | |
| device: str = "auto", | |
| group_size: int = 128, | |
| save_dir: Optional[str] = None | |
| ) -> Optional[str]: | |
| """Alternative quantization using bitsandbytes for better compatibility""" | |
| try: | |
| logger.info(f"π Attempting alternative quantization for: {quant_type}") | |
| # Import bitsandbytes if available | |
| try: | |
| import bitsandbytes as bnb | |
| from transformers import BitsAndBytesConfig | |
| BNB_AVAILABLE = True | |
| except ImportError: | |
| BNB_AVAILABLE = False | |
| logger.error("β bitsandbytes not available for alternative quantization") | |
| return None | |
| if not BNB_AVAILABLE: | |
| return None | |
| # Create bitsandbytes config | |
| if quant_type == "int8_weight_only": | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_8bit=True, | |
| llm_int8_threshold=6.0, | |
| llm_int8_has_fp16_weight=False | |
| ) | |
| elif quant_type == "int4_weight_only": | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.float16, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type="nf4" | |
| ) | |
| else: | |
| logger.error(f"β Unsupported quantization type for alternative method: {quant_type}") | |
| return None | |
| # Load model with bitsandbytes quantization | |
| quantized_model = AutoModelForCausalLM.from_pretrained( | |
| str(self.model_path), | |
| quantization_config=bnb_config, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| low_cpu_mem_usage=True | |
| ) | |
| # Determine save directory | |
| if save_dir is None: | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| save_dir = f"quantized_{quant_type}_bnb_{timestamp}" | |
| save_path = Path(save_dir) | |
| save_path.mkdir(parents=True, exist_ok=True) | |
| # Save quantized model | |
| logger.info(f"πΎ Saving quantized model to: {save_path}") | |
| quantized_model.save_pretrained(save_path, safe_serialization=False) | |
| # Copy tokenizer files if they exist | |
| tokenizer_files = ['tokenizer.json', 'tokenizer_config.json', 'special_tokens_map.json'] | |
| for file in tokenizer_files: | |
| src_file = self.model_path / file | |
| if src_file.exists(): | |
| shutil.copy2(src_file, save_path / file) | |
| logger.info(f"π Copied {file}") | |
| logger.info(f"β Alternative quantization successful: {save_path}") | |
| return str(save_path) | |
| except Exception as e: | |
| logger.error(f"β Alternative quantization failed: {e}") | |
| return None | |
| def quantize_model( | |
| self, | |
| quant_type: str, | |
| device: str = "auto", | |
| group_size: int = 128, | |
| save_dir: Optional[str] = None | |
| ) -> Optional[str]: | |
| """Quantize the model using torchao""" | |
| if not TORCHAO_AVAILABLE: | |
| logger.error("β torchao not available") | |
| return None | |
| try: | |
| logger.info(f"π Loading model from: {self.model_path}") | |
| logger.info(f"π Quantization type: {quant_type}") | |
| logger.info(f"π Device: {device}") | |
| logger.info(f"π Group size: {group_size}") | |
| # Determine optimal device | |
| if device == "auto": | |
| device = self.get_optimal_device(quant_type) | |
| logger.info(f"π Using device: {device}") | |
| # Create quantization config | |
| quantization_config = self.create_quantization_config(quant_type, group_size) | |
| # Load model with appropriate device mapping | |
| if device == "cpu": | |
| device_map = "cpu" | |
| torch_dtype = torch.float32 | |
| elif device == "cuda": | |
| device_map = "auto" | |
| torch_dtype = torch.bfloat16 | |
| else: | |
| device_map = "auto" | |
| torch_dtype = "auto" | |
| # Load and quantize the model | |
| quantized_model = AutoModelForCausalLM.from_pretrained( | |
| str(self.model_path), | |
| torch_dtype=torch_dtype, | |
| device_map=device_map, | |
| quantization_config=quantization_config, | |
| low_cpu_mem_usage=True | |
| ) | |
| # Determine save directory | |
| if save_dir is None: | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| save_dir = f"quantized_{quant_type}_{timestamp}" | |
| save_path = Path(save_dir) | |
| save_path.mkdir(parents=True, exist_ok=True) | |
| # Save quantized model (don't use safetensors for torchao) | |
| logger.info(f"πΎ Saving quantized model to: {save_path}") | |
| # For torchao models, we need to handle serialization carefully | |
| try: | |
| quantized_model.save_pretrained(save_path, safe_serialization=False) | |
| except Exception as save_error: | |
| logger.warning(f"β οΈ Standard save failed: {save_error}") | |
| logger.info("π Attempting alternative save method...") | |
| # Try saving without quantization config | |
| try: | |
| # Remove quantization config temporarily | |
| original_config = quantized_model.config.quantization_config | |
| quantized_model.config.quantization_config = None | |
| quantized_model.save_pretrained(save_path, safe_serialization=False) | |
| quantized_model.config.quantization_config = original_config | |
| except Exception as alt_save_error: | |
| logger.error(f"β Alternative save also failed: {alt_save_error}") | |
| return None | |
| # Copy tokenizer files if they exist | |
| tokenizer_files = ['tokenizer.json', 'tokenizer_config.json', 'special_tokens_map.json'] | |
| for file in tokenizer_files: | |
| src_file = self.model_path / file | |
| if src_file.exists(): | |
| shutil.copy2(src_file, save_path / file) | |
| logger.info(f"π Copied {file}") | |
| logger.info(f"β Model quantized successfully: {save_path}") | |
| return str(save_path) | |
| except Exception as e: | |
| logger.error(f"β Quantization failed: {e}") | |
| # Try alternative quantization method | |
| logger.info("π Attempting alternative quantization method...") | |
| return self.quantize_model_alternative(quant_type, device, group_size, save_dir) | |
| def create_quantized_model_card(self, quant_type: str, original_model: str, subdir: str) -> str: | |
| """Create a model card for the quantized model""" | |
| repo_name = self.repo_name | |
| card_content = f"""--- | |
| language: | |
| - en | |
| - fr | |
| license: apache-2.0 | |
| tags: | |
| - quantized | |
| - {quant_type} | |
| - smollm3 | |
| - fine-tuned | |
| --- | |
| # Quantized SmolLM3 Model | |
| This is a quantized version of the SmolLM3 model using torchao quantization. | |
| ## Model Details | |
| - **Base Model**: SmolLM3-3B | |
| - **Quantization Type**: {quant_type} | |
| - **Original Model**: {original_model} | |
| - **Quantization Library**: torchao | |
| - **Hardware Compatibility**: {'GPU' if 'int8' in quant_type else 'CPU'} | |
| ## Usage | |
| ```python | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| # Load the quantized model | |
| model = AutoModelForCausalLM.from_pretrained( | |
| f"{repo_name}/{subdir}", | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(f"{repo_name}/{subdir}") | |
| # Generate text | |
| input_text = "What are we having for dinner?" | |
| input_ids = tokenizer(input_text, return_tensors="pt").to(model.device.type) | |
| output = model.generate(**input_ids, max_new_tokens=50) | |
| print(tokenizer.decode(output[0], skip_special_tokens=True)) | |
| ``` | |
| ## Quantization Details | |
| - **Method**: torchao {quant_type} | |
| - **Precision**: {'8-bit' if 'int8' in quant_type else '4-bit'} | |
| - **Memory Reduction**: {'~50%' if 'int8' in quant_type else '~75%'} | |
| - **Speed**: {'Faster inference with minimal accuracy loss' if 'int8' in quant_type else 'Significantly faster inference with some accuracy trade-off'} | |
| ## Training Information | |
| This model was quantized from a fine-tuned SmolLM3 model using the torchao library. | |
| The quantization process preserves the model's capabilities while reducing memory usage and improving inference speed. | |
| ## Limitations | |
| - Quantized models may have slightly reduced accuracy compared to the original model | |
| - {quant_type} quantization is optimized for {'GPU inference' if 'int8' in quant_type else 'CPU inference'} | |
| - Some advanced features may not be available in quantized form | |
| ## Citation | |
| If you use this model, please cite the original SmolLM3 paper and mention the quantization process. | |
| ```bibtex | |
| @misc{{smollm3-quantized, | |
| title={{Quantized SmolLM3 Model}}, | |
| author={{Your Name}}, | |
| year={{2024}}, | |
| url={{https://huggingface.co/{repo_name}/{subdir}}} | |
| }} | |
| ``` | |
| """ | |
| return card_content | |
| def create_quantized_readme(self, quant_type: str, original_model: str, subdir: str) -> str: | |
| """Create a README for the quantized model repository""" | |
| repo_name = self.repo_name | |
| readme_content = f"""# Quantized SmolLM3 Model | |
| This repository contains a quantized version of the SmolLM3 model using torchao quantization. | |
| ## Model Information | |
| - **Model Type**: Quantized SmolLM3-3B | |
| - **Quantization**: {quant_type} | |
| - **Original Model**: {original_model} | |
| - **Library**: torchao | |
| - **Hardware**: {'GPU optimized' if 'int8' in quant_type else 'CPU optimized'} | |
| ## Quick Start | |
| ```python | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| # Load the quantized model | |
| model = AutoModelForCausalLM.from_pretrained( | |
| f"{repo_name}/{subdir}", | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(f"{repo_name}/{subdir}") | |
| # Generate text | |
| input_text = "What are we having for dinner?" | |
| input_ids = tokenizer(input_text, return_tensors="pt").to(model.device.type) | |
| output = model.generate(**input_ids, max_new_tokens=50) | |
| print(tokenizer.decode(output[0], skip_special_tokens=True)) | |
| ``` | |
| ## Quantization Benefits | |
| - **Memory Efficiency**: {'~50% reduction in memory usage' if 'int8' in quant_type else '~75% reduction in memory usage'} | |
| - **Speed**: {'Faster inference with minimal accuracy loss' if 'int8' in quant_type else 'Significantly faster inference'} | |
| - **Compatibility**: {'GPU optimized for high-performance inference' if 'int8' in quant_type else 'CPU optimized for deployment'} | |
| ## Installation | |
| ```bash | |
| pip install torchao transformers | |
| ``` | |
| ## Usage Examples | |
| ### Text Generation | |
| ```python | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| model = AutoModelForCausalLM.from_pretrained(f"{repo_name}/{subdir}") | |
| tokenizer = AutoTokenizer.from_pretrained(f"{repo_name}/{subdir}") | |
| text = "The future of artificial intelligence is" | |
| inputs = tokenizer(text, return_tensors="pt") | |
| outputs = model.generate(**inputs, max_new_tokens=100) | |
| print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
| ``` | |
| ### Conversation | |
| ```python | |
| def chat_with_model(prompt, max_length=100): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| outputs = model.generate(**inputs, max_new_tokens=max_length) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| response = chat_with_model("Hello, how are you today?") | |
| print(response) | |
| ``` | |
| ## Model Architecture | |
| This is a quantized version of the SmolLM3-3B model with the following specifications: | |
| - **Base Model**: SmolLM3-3B | |
| - **Quantization**: {quant_type} | |
| - **Parameters**: ~3B (quantized) | |
| - **Context Length**: Variable (depends on original model) | |
| - **Languages**: English, French | |
| ## Performance | |
| The quantized model provides: | |
| - **Memory Usage**: {'~50% of original model' if 'int8' in quant_type else '~25% of original model'} | |
| - **Inference Speed**: {'Faster than original with minimal accuracy loss' if 'int8' in quant_type else 'Significantly faster with some accuracy trade-off'} | |
| - **Accuracy**: {'Minimal degradation' if 'int8' in quant_type else 'Some degradation acceptable for speed'} | |
| ## Limitations | |
| 1. **Accuracy**: Quantized models may have slightly reduced accuracy | |
| 2. **Compatibility**: {'GPU optimized, may not work on CPU' if 'int8' in quant_type else 'CPU optimized, may not work on GPU'} | |
| 3. **Features**: Some advanced features may not be available | |
| 4. **Training**: Cannot be further fine-tuned in quantized form | |
| ## Citation | |
| If you use this model in your research, please cite: | |
| ```bibtex | |
| @misc{{smollm3-quantized, | |
| title={{Quantized SmolLM3 Model}}, | |
| author={{Your Name}}, | |
| year={{2024}}, | |
| url={{https://huggingface.co/{repo_name}/{subdir}}} | |
| }} | |
| ``` | |
| ## License | |
| This model is licensed under the Apache 2.0 License. | |
| ## Support | |
| For questions and support, please open an issue on the Hugging Face repository. | |
| """ | |
| return readme_content | |
| def push_quantized_model( | |
| self, | |
| quantized_model_path: str, | |
| quant_type: str, | |
| original_model: str | |
| ) -> bool: | |
| """Push quantized model to the same Hugging Face repository as the main model""" | |
| try: | |
| logger.info(f"π Pushing quantized model to subdirectory in: {self.repo_name}") | |
| # Determine subdirectory name based on quantization type | |
| if quant_type == "int8_weight_only": | |
| subdir = "int8" | |
| elif quant_type == "int4_weight_only": | |
| subdir = "int4" | |
| elif quant_type == "int8_dynamic": | |
| subdir = "int8_dynamic" | |
| else: | |
| subdir = quant_type.replace("_", "-") | |
| # Create repository if it doesn't exist | |
| create_repo( | |
| repo_id=self.repo_name, | |
| token=self.token, | |
| private=self.private, | |
| exist_ok=True | |
| ) | |
| # Create model card for the quantized version | |
| model_card = self.create_quantized_model_card(quant_type, original_model, subdir) | |
| model_card_path = Path(quantized_model_path) / "README.md" | |
| with open(model_card_path, 'w', encoding='utf-8') as f: | |
| f.write(model_card) | |
| # Upload all files to subdirectory | |
| logger.info(f"π€ Uploading quantized model files to {subdir}/ subdirectory...") | |
| for file_path in Path(quantized_model_path).rglob("*"): | |
| if file_path.is_file(): | |
| relative_path = file_path.relative_to(quantized_model_path) | |
| # Upload to subdirectory within the repository | |
| repo_path = f"{subdir}/{relative_path}" | |
| upload_file( | |
| path_or_fileobj=str(file_path), | |
| path_in_repo=repo_path, | |
| repo_id=self.repo_name, | |
| token=self.token | |
| ) | |
| logger.info(f"π€ Uploaded: {repo_path}") | |
| logger.info(f"β Quantized model pushed successfully to: https://huggingface.co/{self.repo_name}/{subdir}") | |
| # Log to Trackio if available | |
| if self.monitor: | |
| self.monitor.log_metric("quantization_type", quant_type) | |
| self.monitor.log_metric("quantized_model_url", f"https://huggingface.co/{self.repo_name}/{subdir}") | |
| self.monitor.log_artifact("quantized_model_path", quantized_model_path) | |
| return True | |
| except Exception as e: | |
| logger.error(f"β Failed to push quantized model: {e}") | |
| return False | |
| def log_to_trackio(self, action: str, details: Dict[str, Any]): | |
| """Log quantization events to Trackio""" | |
| if self.monitor: | |
| try: | |
| # Use the correct monitoring method | |
| if hasattr(self.monitor, 'log_event'): | |
| self.monitor.log_event(action, details) | |
| elif hasattr(self.monitor, 'log_metric'): | |
| # Log as metric instead | |
| self.monitor.log_metric(action, details.get('value', 1.0)) | |
| elif hasattr(self.monitor, 'log'): | |
| # Use generic log method | |
| self.monitor.log(action, details) | |
| else: | |
| # Just log locally if no monitoring method available | |
| logger.info(f"π {action}: {details}") | |
| logger.info(f"π Logged to Trackio: {action}") | |
| except Exception as e: | |
| logger.warning(f"β οΈ Failed to log to Trackio: {e}") | |
| else: | |
| # Log locally if no monitor available | |
| logger.info(f"π {action}: {details}") | |
| def quantize_and_push( | |
| self, | |
| quant_type: str, | |
| device: str = "auto", | |
| group_size: int = 128 | |
| ) -> bool: | |
| """Complete quantization and push workflow""" | |
| try: | |
| # Validate model path | |
| if not self.validate_model_path(): | |
| return False | |
| # Log start of quantization | |
| self.log_to_trackio("quantization_started", { | |
| "quant_type": quant_type, | |
| "device": device, | |
| "group_size": group_size, | |
| "model_path": str(self.model_path) | |
| }) | |
| # Quantize model | |
| quantized_path = self.quantize_model(quant_type, device, group_size) | |
| if not quantized_path: | |
| return False | |
| # Log successful quantization | |
| self.log_to_trackio("quantization_completed", { | |
| "quantized_path": quantized_path, | |
| "quant_type": quant_type | |
| }) | |
| # Push to HF Hub | |
| original_model = str(self.model_path) | |
| if not self.push_quantized_model(quantized_path, quant_type, original_model): | |
| return False | |
| # Log successful push | |
| self.log_to_trackio("quantized_model_pushed", { | |
| "repo_name": self.repo_name, | |
| "quant_type": quant_type | |
| }) | |
| logger.info(f"π Quantization and push completed successfully!") | |
| logger.info(f"π Model: https://huggingface.co/{self.repo_name}") | |
| return True | |
| except Exception as e: | |
| logger.error(f"β Quantization and push failed: {e}") | |
| self.log_to_trackio("quantization_failed", {"error": str(e)}) | |
| return False | |
| def parse_args(): | |
| """Parse command line arguments""" | |
| parser = argparse.ArgumentParser(description="Quantize model using torchao") | |
| parser.add_argument("model_path", help="Path to the trained model") | |
| parser.add_argument("repo_name", help="Hugging Face repository name") | |
| parser.add_argument("--quant-type", choices=["int8_weight_only", "int4_weight_only", "int8_dynamic"], | |
| default="int8_weight_only", help="Quantization type") | |
| parser.add_argument("--device", default="auto", help="Device for quantization (auto, cpu, cuda)") | |
| parser.add_argument("--group-size", type=int, default=128, help="Group size for quantization") | |
| parser.add_argument("--token", help="Hugging Face token") | |
| parser.add_argument("--private", action="store_true", help="Create private repository") | |
| parser.add_argument("--trackio-url", help="Trackio URL for monitoring") | |
| parser.add_argument("--experiment-name", help="Experiment name for tracking") | |
| parser.add_argument("--dataset-repo", help="HF Dataset repository") | |
| return parser.parse_args() | |
| def main(): | |
| """Main function""" | |
| args = parse_args() | |
| # Setup logging | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
| ) | |
| # Check torchao availability | |
| if not TORCHAO_AVAILABLE: | |
| logger.error("β torchao not available. Install with: pip install torchao") | |
| return 1 | |
| # Initialize quantizer | |
| quantizer = ModelQuantizer( | |
| model_path=args.model_path, | |
| repo_name=args.repo_name, | |
| token=args.token, | |
| private=args.private, | |
| trackio_url=args.trackio_url, | |
| experiment_name=args.experiment_name, | |
| dataset_repo=args.dataset_repo | |
| ) | |
| # Perform quantization and push | |
| success = quantizer.quantize_and_push( | |
| quant_type=args.quant_type, | |
| device=args.device, | |
| group_size=args.group_size | |
| ) | |
| return 0 if success else 1 | |
| if __name__ == "__main__": | |
| exit(main()) |