Spaces:
Running
Running
""" | |
Trackio Deployment on Hugging Face Spaces | |
A Gradio interface for experiment tracking and monitoring | |
""" | |
import gradio as gr | |
import os | |
import json | |
import logging | |
from datetime import datetime | |
from typing import Dict, Any, Optional | |
import requests | |
import plotly.graph_objects as go | |
import plotly.express as px | |
import pandas as pd | |
import numpy as np | |
# Setup logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class TrackioSpace: | |
"""Trackio deployment for Hugging Face Spaces using HF Datasets""" | |
def __init__(self, hf_token: Optional[str] = None, dataset_repo: Optional[str] = None): | |
self.experiments = {} | |
self.current_experiment = None | |
self.backup_mode = False | |
self.dataset_manager = None | |
# Get dataset repository and HF token from parameters or environment variables | |
# Respect explicit values; avoid hardcoded defaults that might point to test repos | |
default_dataset_repo = os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments') | |
self.dataset_repo = dataset_repo or default_dataset_repo | |
self.hf_token = hf_token or os.environ.get('HF_TOKEN') | |
logger.info(f"🔧 Using dataset repository: {self.dataset_repo}") | |
if not self.hf_token: | |
logger.warning("⚠️ HF_TOKEN not found. Some features may not work.") | |
# Initialize dataset manager for safe, non-destructive operations | |
try: | |
import sys | |
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..', 'src')) | |
from dataset_utils import TrackioDatasetManager # type: ignore | |
if self.hf_token and self.dataset_repo: | |
self.dataset_manager = TrackioDatasetManager(self.dataset_repo, self.hf_token) | |
logger.info("✅ Dataset manager initialized (data preservation enabled)") | |
except Exception as e: | |
logger.warning(f"⚠️ Dataset manager not available, using legacy save mode: {e}") | |
self._load_experiments() | |
def _load_experiments(self): | |
"""Load experiments from HF Dataset""" | |
try: | |
if self.hf_token: | |
from datasets import load_dataset | |
# Try to load the dataset | |
try: | |
dataset = load_dataset(self.dataset_repo, token=self.hf_token) | |
logger.info(f"✅ Loaded experiments from {self.dataset_repo}") | |
# Convert dataset to experiments dict | |
self.experiments = {} | |
if 'train' in dataset: | |
for row in dataset['train']: | |
exp_id = row.get('experiment_id') | |
if exp_id: | |
self.experiments[exp_id] = { | |
'id': exp_id, | |
'name': row.get('name', ''), | |
'description': row.get('description', ''), | |
'created_at': row.get('created_at', ''), | |
'status': row.get('status', 'running'), | |
'metrics': json.loads(row.get('metrics', '[]')), | |
'parameters': json.loads(row.get('parameters', '{}')), | |
'artifacts': json.loads(row.get('artifacts', '[]')), | |
'logs': json.loads(row.get('logs', '[]')) | |
} | |
logger.info(f"📊 Loaded {len(self.experiments)} experiments from dataset") | |
except Exception as e: | |
logger.warning(f"Failed to load from dataset: {e}") | |
# Fall back to backup data | |
self._load_backup_experiments() | |
else: | |
# No HF token, use backup data but do not allow saving to dataset from backup | |
self._load_backup_experiments() | |
self.backup_mode = True | |
except Exception as e: | |
logger.error(f"Failed to load experiments: {e}") | |
self._load_backup_experiments() | |
self.backup_mode = True | |
def _load_backup_experiments(self): | |
"""Load backup experiments when dataset is not available""" | |
logger.info("🔄 Loading backup experiments...") | |
# Get dynamic trackio URL from environment or use a placeholder | |
trackio_url = os.environ.get('TRACKIO_URL', 'https://your-trackio-space.hf.space') | |
backup_experiments = { | |
'exp_20250720_130853': { | |
'id': 'exp_20250720_130853', | |
'name': 'petite-elle-l-aime-3', | |
'description': 'SmolLM3 fine-tuning experiment', | |
'created_at': '2025-07-20T11:20:01.780908', | |
'status': 'running', | |
'metrics': [ | |
{ | |
'timestamp': '2025-07-20T11:20:01.780908', | |
'step': 25, | |
'metrics': { | |
'loss': 1.1659, | |
'grad_norm': 10.3125, | |
'learning_rate': 7e-08, | |
'num_tokens': 1642080.0, | |
'mean_token_accuracy': 0.75923578992486, | |
'epoch': 0.004851130919895701 | |
} | |
}, | |
{ | |
'timestamp': '2025-07-20T11:26:39.042155', | |
'step': 50, | |
'metrics': { | |
'loss': 1.165, | |
'grad_norm': 10.75, | |
'learning_rate': 1.4291666666666667e-07, | |
'num_tokens': 3324682.0, | |
'mean_token_accuracy': 0.7577659255266189, | |
'epoch': 0.009702261839791402 | |
} | |
}, | |
{ | |
'timestamp': '2025-07-20T11:33:16.203045', | |
'step': 75, | |
'metrics': { | |
'loss': 1.1639, | |
'grad_norm': 10.6875, | |
'learning_rate': 2.1583333333333334e-07, | |
'num_tokens': 4987941.0, | |
'mean_token_accuracy': 0.7581205774843692, | |
'epoch': 0.014553392759687101 | |
} | |
}, | |
{ | |
'timestamp': '2025-07-20T11:39:53.453917', | |
'step': 100, | |
'metrics': { | |
'loss': 1.1528, | |
'grad_norm': 10.75, | |
'learning_rate': 2.8875e-07, | |
'num_tokens': 6630190.0, | |
'mean_token_accuracy': 0.7614579878747463, | |
'epoch': 0.019404523679582803 | |
} | |
} | |
], | |
'parameters': { | |
'model_name': 'HuggingFaceTB/SmolLM3-3B', | |
'max_seq_length': 12288, | |
'use_flash_attention': True, | |
'use_gradient_checkpointing': False, | |
'batch_size': 8, | |
'gradient_accumulation_steps': 16, | |
'learning_rate': 3.5e-06, | |
'weight_decay': 0.01, | |
'warmup_steps': 1200, | |
'max_iters': 18000, | |
'eval_interval': 1000, | |
'log_interval': 25, | |
'save_interval': 2000, | |
'optimizer': 'adamw_torch', | |
'beta1': 0.9, | |
'beta2': 0.999, | |
'eps': 1e-08, | |
'scheduler': 'cosine', | |
'min_lr': 3.5e-07, | |
'fp16': False, | |
'bf16': True, | |
'ddp_backend': 'nccl', | |
'ddp_find_unused_parameters': False, | |
'save_steps': 2000, | |
'eval_steps': 1000, | |
'logging_steps': 25, | |
'save_total_limit': 5, | |
'eval_strategy': 'steps', | |
'metric_for_best_model': 'eval_loss', | |
'greater_is_better': False, | |
'load_best_model_at_end': True, | |
'data_dir': None, | |
'train_file': None, | |
'validation_file': None, | |
'test_file': None, | |
'use_chat_template': True, | |
'chat_template_kwargs': {'add_generation_prompt': True, 'no_think_system_message': True}, | |
'enable_tracking': True, | |
'trackio_url': trackio_url, | |
'trackio_token': None, | |
'log_artifacts': True, | |
'log_metrics': True, | |
'log_config': True, | |
'experiment_name': 'petite-elle-l-aime-3', | |
'dataset_name': 'legmlai/openhermes-fr', | |
'dataset_split': 'train', | |
'input_field': 'prompt', | |
'target_field': 'accepted_completion', | |
'filter_bad_entries': True, | |
'bad_entry_field': 'bad_entry', | |
'packing': False, | |
'max_prompt_length': 12288, | |
'max_completion_length': 8192, | |
'truncation': True, | |
'dataloader_num_workers': 10, | |
'dataloader_pin_memory': True, | |
'dataloader_prefetch_factor': 3, | |
'max_grad_norm': 1.0, | |
'group_by_length': True | |
}, | |
'artifacts': [], | |
'logs': [] | |
}, | |
'exp_20250720_134319': { | |
'id': 'exp_20250720_134319', | |
'name': 'petite-elle-l-aime-3-1', | |
'description': 'SmolLM3 fine-tuning experiment', | |
'created_at': '2025-07-20T11:54:31.993219', | |
'status': 'running', | |
'metrics': [ | |
{ | |
'timestamp': '2025-07-20T11:54:31.993219', | |
'step': 25, | |
'metrics': { | |
'loss': 1.166, | |
'grad_norm': 10.375, | |
'learning_rate': 7e-08, | |
'num_tokens': 1642080.0, | |
'mean_token_accuracy': 0.7590958896279335, | |
'epoch': 0.004851130919895701 | |
} | |
}, | |
{ | |
'timestamp': '2025-07-20T11:54:33.589487', | |
'step': 25, | |
'metrics': { | |
'gpu_0_memory_allocated': 17.202261447906494, | |
'gpu_0_memory_reserved': 75.474609375, | |
'gpu_0_utilization': 0, | |
'cpu_percent': 2.7, | |
'memory_percent': 10.1 | |
} | |
} | |
], | |
'parameters': { | |
'model_name': 'HuggingFaceTB/SmolLM3-3B', | |
'max_seq_length': 12288, | |
'use_flash_attention': True, | |
'use_gradient_checkpointing': False, | |
'batch_size': 8, | |
'gradient_accumulation_steps': 16, | |
'learning_rate': 3.5e-06, | |
'weight_decay': 0.01, | |
'warmup_steps': 1200, | |
'max_iters': 18000, | |
'eval_interval': 1000, | |
'log_interval': 25, | |
'save_interval': 2000, | |
'optimizer': 'adamw_torch', | |
'beta1': 0.9, | |
'beta2': 0.999, | |
'eps': 1e-08, | |
'scheduler': 'cosine', | |
'min_lr': 3.5e-07, | |
'fp16': False, | |
'bf16': True, | |
'ddp_backend': 'nccl', | |
'ddp_find_unused_parameters': False, | |
'save_steps': 2000, | |
'eval_steps': 1000, | |
'logging_steps': 25, | |
'save_total_limit': 5, | |
'eval_strategy': 'steps', | |
'metric_for_best_model': 'eval_loss', | |
'greater_is_better': False, | |
'load_best_model_at_end': True, | |
'data_dir': None, | |
'train_file': None, | |
'validation_file': None, | |
'test_file': None, | |
'use_chat_template': True, | |
'chat_template_kwargs': {'add_generation_prompt': True, 'no_think_system_message': True}, | |
'enable_tracking': True, | |
'trackio_url': trackio_url, | |
'trackio_token': None, | |
'log_artifacts': True, | |
'log_metrics': True, | |
'log_config': True, | |
'experiment_name': 'petite-elle-l-aime-3-1', | |
'dataset_name': 'legmlai/openhermes-fr', | |
'dataset_split': 'train', | |
'input_field': 'prompt', | |
'target_field': 'accepted_completion', | |
'filter_bad_entries': True, | |
'bad_entry_field': 'bad_entry', | |
'packing': False, | |
'max_prompt_length': 12288, | |
'max_completion_length': 8192, | |
'truncation': True, | |
'dataloader_num_workers': 10, | |
'dataloader_pin_memory': True, | |
'dataloader_prefetch_factor': 3, | |
'max_grad_norm': 1.0, | |
'group_by_length': True | |
}, | |
'artifacts': [], | |
'logs': [] | |
} | |
} | |
self.experiments = backup_experiments | |
self.current_experiment = 'exp_20250720_134319' | |
logger.info(f"✅ Loaded {len(backup_experiments)} backup experiments") | |
def _upsert_experiment(self, experiment_id: str): | |
"""Non-destructive upsert of a single experiment to the dataset if manager available.""" | |
try: | |
if not self.dataset_manager or not self.hf_token: | |
# Fallback to legacy save method | |
self._save_experiments() | |
return | |
exp = self.experiments.get(experiment_id) | |
if not exp: | |
return | |
# Build dataset row with JSON-encoded fields | |
payload = { | |
'experiment_id': experiment_id, | |
'name': exp.get('name', ''), | |
'description': exp.get('description', ''), | |
'created_at': exp.get('created_at', ''), | |
'status': exp.get('status', 'running'), | |
'metrics': json.dumps(exp.get('metrics', []), default=str), | |
'parameters': json.dumps(exp.get('parameters', {}), default=str), | |
'artifacts': json.dumps(exp.get('artifacts', []), default=str), | |
'logs': json.dumps(exp.get('logs', []), default=str), | |
'last_updated': datetime.now().isoformat() | |
} | |
self.dataset_manager.upsert_experiment(payload) | |
except Exception as e: | |
logger.warning(f"⚠️ Upsert failed, falling back to legacy save: {e}") | |
self._save_experiments() | |
def _save_experiments(self): | |
"""Save experiments to HF Dataset (legacy fallback). | |
Prefer using dataset manager upserts in per-operation paths. This method is | |
retained as a fallback when the manager isn't available. | |
""" | |
try: | |
if self.backup_mode: | |
logger.warning("⚠️ Backup mode active; skipping dataset save to avoid overwriting real data with demo values") | |
return | |
if self.hf_token and not self.dataset_manager: | |
from datasets import Dataset | |
from huggingface_hub import HfApi | |
# Convert experiments to dataset format | |
dataset_data = [] | |
for exp_id, exp_data in self.experiments.items(): | |
dataset_data.append({ | |
'experiment_id': exp_id, | |
'name': exp_data.get('name', ''), | |
'description': exp_data.get('description', ''), | |
'created_at': exp_data.get('created_at', ''), | |
'status': exp_data.get('status', 'running'), | |
'metrics': json.dumps(exp_data.get('metrics', [])), | |
'parameters': json.dumps(exp_data.get('parameters', {})), | |
'artifacts': json.dumps(exp_data.get('artifacts', [])), | |
'logs': json.dumps(exp_data.get('logs', [])), | |
'last_updated': datetime.now().isoformat() | |
}) | |
# Create dataset | |
dataset = Dataset.from_list(dataset_data) | |
# Push to HF Hub | |
api = HfApi(token=self.hf_token) | |
dataset.push_to_hub( | |
self.dataset_repo, | |
token=self.hf_token, | |
private=True # Make it private for security | |
) | |
logger.info(f"✅ Saved {len(dataset_data)} experiments to {self.dataset_repo} (legacy mode)") | |
else: | |
logger.warning("⚠️ No dataset manager and/or HF_TOKEN available, experiments not saved to dataset") | |
except Exception as e: | |
logger.error(f"Failed to save experiments to dataset: {e}") | |
# Fall back to local file for backup | |
try: | |
data = { | |
'experiments': self.experiments, | |
'current_experiment': self.current_experiment, | |
'last_updated': datetime.now().isoformat() | |
} | |
with open("trackio_experiments_backup.json", 'w') as f: | |
json.dump(data, f, indent=2, default=str) | |
logger.info("✅ Saved backup to local file") | |
except Exception as backup_e: | |
logger.error(f"Failed to save backup: {backup_e}") | |
def create_experiment(self, name: str, description: str = "") -> Dict[str, Any]: | |
"""Create a new experiment""" | |
experiment_id = f"exp_{datetime.now().strftime('%Y%m%d_%H%M%S')}" | |
experiment = { | |
'id': experiment_id, | |
'name': name, | |
'description': description, | |
'created_at': datetime.now().isoformat(), | |
'status': 'running', | |
'metrics': [], | |
'parameters': {}, | |
'artifacts': [], | |
'logs': [] | |
} | |
self.experiments[experiment_id] = experiment | |
self.current_experiment = experiment_id | |
# Prefer non-destructive upsert | |
self._upsert_experiment(experiment_id) | |
logger.info(f"Created experiment: {experiment_id} - {name}") | |
return experiment | |
def log_metrics(self, experiment_id: str, metrics: Dict[str, Any], step: Optional[int] = None): | |
"""Log metrics for an experiment""" | |
if experiment_id not in self.experiments: | |
raise ValueError(f"Experiment {experiment_id} not found") | |
metric_entry = { | |
'timestamp': datetime.now().isoformat(), | |
'step': step, | |
'metrics': metrics | |
} | |
self.experiments[experiment_id]['metrics'].append(metric_entry) | |
self._upsert_experiment(experiment_id) | |
logger.info(f"Logged metrics for experiment {experiment_id}: {metrics}") | |
def log_parameters(self, experiment_id: str, parameters: Dict[str, Any]): | |
"""Log parameters for an experiment""" | |
if experiment_id not in self.experiments: | |
raise ValueError(f"Experiment {experiment_id} not found") | |
self.experiments[experiment_id]['parameters'].update(parameters) | |
self._upsert_experiment(experiment_id) | |
logger.info(f"Logged parameters for experiment {experiment_id}: {parameters}") | |
def log_artifact(self, experiment_id: str, artifact_name: str, artifact_data: str): | |
"""Log an artifact for an experiment""" | |
if experiment_id not in self.experiments: | |
raise ValueError(f"Experiment {experiment_id} not found") | |
artifact_entry = { | |
'name': artifact_name, | |
'timestamp': datetime.now().isoformat(), | |
'data': artifact_data | |
} | |
self.experiments[experiment_id]['artifacts'].append(artifact_entry) | |
self._upsert_experiment(experiment_id) | |
logger.info(f"Logged artifact for experiment {experiment_id}: {artifact_name}") | |
def get_experiment(self, experiment_id: str) -> Optional[Dict[str, Any]]: | |
"""Get experiment details""" | |
return self.experiments.get(experiment_id) | |
def list_experiments(self) -> Dict[str, Any]: | |
"""List all experiments""" | |
return { | |
'experiments': list(self.experiments.keys()), | |
'current_experiment': self.current_experiment, | |
'total_experiments': len(self.experiments) | |
} | |
def update_experiment_status(self, experiment_id: str, status: str): | |
"""Update experiment status""" | |
if experiment_id in self.experiments: | |
self.experiments[experiment_id]['status'] = status | |
self._upsert_experiment(experiment_id) | |
logger.info(f"Updated experiment {experiment_id} status to {status}") | |
def get_metrics_dataframe(self, experiment_id: str) -> pd.DataFrame: | |
"""Get metrics as a pandas DataFrame for plotting""" | |
if experiment_id not in self.experiments: | |
return pd.DataFrame() | |
experiment = self.experiments[experiment_id] | |
if not experiment['metrics']: | |
return pd.DataFrame() | |
# Convert metrics to DataFrame | |
data = [] | |
for metric_entry in experiment['metrics']: | |
step = metric_entry.get('step', 0) | |
timestamp = metric_entry.get('timestamp', '') | |
metrics = metric_entry.get('metrics', {}) | |
row = {'step': step, 'timestamp': timestamp} | |
row.update(metrics) | |
data.append(row) | |
return pd.DataFrame(data) | |
# Global instance | |
trackio_space = TrackioSpace() | |
def update_trackio_config(hf_token: str, dataset_repo: str) -> str: | |
"""Update TrackioSpace configuration with new HF token and dataset repository""" | |
global trackio_space | |
try: | |
# Create new instance with updated configuration | |
trackio_space = TrackioSpace(hf_token=hf_token if hf_token.strip() else None, | |
dataset_repo=dataset_repo if dataset_repo.strip() else None) | |
# Reload experiments with new configuration | |
trackio_space._load_experiments() | |
return f"✅ Configuration updated successfully!\n📊 Dataset: {trackio_space.dataset_repo}\n🔑 HF Token: {'Set' if trackio_space.hf_token else 'Not set'}\n📈 Loaded {len(trackio_space.experiments)} experiments" | |
except Exception as e: | |
return f"❌ Failed to update configuration: {str(e)}" | |
def test_dataset_connection(hf_token: str, dataset_repo: str) -> str: | |
"""Test connection to HF Dataset repository""" | |
try: | |
if not hf_token.strip(): | |
return "❌ Please provide a Hugging Face token" | |
if not dataset_repo.strip(): | |
return "❌ Please provide a dataset repository" | |
from datasets import load_dataset | |
# Test loading the dataset | |
dataset = load_dataset(dataset_repo, token=hf_token) | |
# Count experiments | |
experiment_count = len(dataset['train']) if 'train' in dataset else 0 | |
return f"✅ Connection successful!\n📊 Dataset: {dataset_repo}\n📈 Found {experiment_count} experiments\n🔗 Dataset URL: https://huggingface.co/datasets/{dataset_repo}" | |
except Exception as e: | |
return f"❌ Connection failed: {str(e)}\n\n💡 Troubleshooting:\n1. Check your HF token is correct\n2. Verify the dataset repository exists\n3. Ensure your token has read access to the dataset" | |
def create_dataset_repository(hf_token: str, dataset_repo: str) -> str: | |
"""Create HF Dataset repository if it doesn't exist""" | |
try: | |
if not hf_token.strip(): | |
return "❌ Please provide a Hugging Face token" | |
if not dataset_repo.strip(): | |
return "❌ Please provide a dataset repository" | |
from datasets import Dataset | |
from huggingface_hub import HfApi | |
# Parse username and dataset name | |
if '/' not in dataset_repo: | |
return "❌ Dataset repository must be in format: username/dataset-name" | |
username, dataset_name = dataset_repo.split('/', 1) | |
# Create API client | |
api = HfApi(token=hf_token) | |
# Check if dataset exists | |
try: | |
api.dataset_info(dataset_repo) | |
return f"✅ Dataset {dataset_repo} already exists!" | |
except: | |
# Dataset doesn't exist, create it | |
pass | |
# Create empty dataset | |
empty_dataset = Dataset.from_dict({ | |
'experiment_id': [], | |
'name': [], | |
'description': [], | |
'created_at': [], | |
'status': [], | |
'metrics': [], | |
'parameters': [], | |
'artifacts': [], | |
'logs': [], | |
'last_updated': [] | |
}) | |
# Push to hub | |
empty_dataset.push_to_hub( | |
dataset_repo, | |
token=hf_token, | |
private=True | |
) | |
return f"✅ Dataset {dataset_repo} created successfully!\n🔗 View at: https://huggingface.co/datasets/{dataset_repo}\n📊 Ready to store experiments" | |
except Exception as e: | |
return f"❌ Failed to create dataset: {str(e)}\n\n💡 Troubleshooting:\n1. Check your HF token has write permissions\n2. Verify the username in the repository name\n3. Ensure the dataset name is valid" | |
# Initialize API client for remote data if environment provides a space id/url | |
api_client = None | |
try: | |
from trackio_api_client import TrackioAPIClient | |
space_id = os.environ.get('TRACKIO_URL') or os.environ.get('TRACKIO_SPACE_ID') | |
if space_id: | |
api_client = TrackioAPIClient(space_id, os.environ.get('HF_TOKEN')) | |
logger.info("✅ API client initialized for remote data access") | |
else: | |
logger.info("No TRACKIO_URL/TRACKIO_SPACE_ID set; remote API client disabled") | |
except ImportError: | |
logger.warning("⚠️ API client not available, using local data only") | |
except Exception as e: | |
logger.warning(f"⚠️ Could not initialize API client: {e}") | |
# Add Hugging Face Spaces compatibility | |
def is_huggingface_spaces(): | |
"""Check if running on Hugging Face Spaces""" | |
return os.environ.get('SPACE_ID') is not None | |
def get_persistent_data_path(): | |
"""Get a persistent data path for Hugging Face Spaces""" | |
if is_huggingface_spaces(): | |
# Use a path that might persist better on HF Spaces | |
return "/tmp/trackio_experiments.json" | |
else: | |
return "trackio_experiments.json" | |
# Override the data file path for HF Spaces if attribute exists | |
if is_huggingface_spaces() and hasattr(trackio_space, 'data_file'): | |
logger.info("🚀 Running on Hugging Face Spaces - using persistent storage") | |
trackio_space.data_file = get_persistent_data_path() | |
def get_remote_experiment_data(experiment_id: str) -> Dict[str, Any]: | |
"""Get experiment data from remote API""" | |
if api_client is None: | |
return None | |
try: | |
# Get experiment details from API | |
details_result = api_client.get_experiment_details(experiment_id) | |
if "success" in details_result: | |
return {"remote": True, "data": details_result["data"]} | |
else: | |
logger.warning(f"Failed to get remote data for {experiment_id}: {details_result}") | |
return None | |
except Exception as e: | |
logger.error(f"Error getting remote data: {e}") | |
return None | |
def parse_remote_metrics_data(experiment_details: str) -> pd.DataFrame: | |
"""Parse metrics data from remote experiment details""" | |
try: | |
# Look for metrics in the experiment details | |
lines = experiment_details.split('\n') | |
metrics_data = [] | |
for line in lines: | |
if 'Step:' in line and 'Metrics:' in line: | |
# Extract step and metrics from the line | |
try: | |
# Parse step number | |
step_part = line.split('Step:')[1].split('Metrics:')[0].strip() | |
step = int(step_part) | |
# Parse metrics JSON | |
metrics_part = line.split('Metrics:')[1].strip() | |
metrics = json.loads(metrics_part) | |
# Add timestamp | |
row = {'step': step, 'timestamp': datetime.now().isoformat()} | |
row.update(metrics) | |
metrics_data.append(row) | |
except (ValueError, json.JSONDecodeError) as e: | |
logger.warning(f"Failed to parse metrics line: {line} - {e}") | |
continue | |
if metrics_data: | |
return pd.DataFrame(metrics_data) | |
else: | |
return pd.DataFrame() | |
except Exception as e: | |
logger.error(f"Error parsing remote metrics: {e}") | |
return pd.DataFrame() | |
def get_metrics_dataframe(experiment_id: str) -> pd.DataFrame: | |
"""Get metrics as a pandas DataFrame for plotting - tries remote first, then local""" | |
# Try to get remote data first | |
remote_data = get_remote_experiment_data(experiment_id) | |
if remote_data: | |
logger.info(f"Using remote data for {experiment_id}") | |
# Parse the remote experiment details to extract metrics | |
df = parse_remote_metrics_data(remote_data["data"]) | |
if not df.empty: | |
logger.info(f"Found {len(df)} metrics entries from remote data") | |
return df | |
else: | |
logger.warning(f"No metrics found in remote data for {experiment_id}") | |
# Fall back to local data | |
logger.info(f"Using local data for {experiment_id}") | |
return trackio_space.get_metrics_dataframe(experiment_id) | |
def create_experiment_interface(name: str, description: str): | |
"""Create a new experiment""" | |
try: | |
experiment = trackio_space.create_experiment(name, description) | |
msg = f"✅ Experiment created successfully!\nID: {experiment['id']}\nName: {experiment['name']}\nStatus: {experiment['status']}" | |
dropdown = gr.Dropdown(choices=list(trackio_space.experiments.keys()), value=experiment['id']) | |
return msg, dropdown | |
except Exception as e: | |
dropdown = gr.Dropdown(choices=list(trackio_space.experiments.keys()), value=None) | |
return f"❌ Error creating experiment: {str(e)}", dropdown | |
def log_metrics_interface(experiment_id: str, metrics_json: str, step: str) -> str: | |
"""Log metrics for an experiment""" | |
try: | |
metrics = json.loads(metrics_json) | |
step_int = int(step) if step else None | |
trackio_space.log_metrics(experiment_id, metrics, step_int) | |
return f"✅ Metrics logged successfully for experiment {experiment_id}\nStep: {step_int}\nMetrics: {json.dumps(metrics, indent=2)}" | |
except Exception as e: | |
return f"❌ Error logging metrics: {str(e)}" | |
def log_parameters_interface(experiment_id: str, parameters_json: str) -> str: | |
"""Log parameters for an experiment""" | |
try: | |
parameters = json.loads(parameters_json) | |
trackio_space.log_parameters(experiment_id, parameters) | |
return f"✅ Parameters logged successfully for experiment {experiment_id}\nParameters: {json.dumps(parameters, indent=2)}" | |
except Exception as e: | |
return f"❌ Error logging parameters: {str(e)}" | |
def get_experiment_details(experiment_id: str) -> str: | |
"""Get experiment details""" | |
try: | |
experiment = trackio_space.get_experiment(experiment_id) | |
if experiment: | |
# Format the output nicely | |
details = f""" | |
📊 EXPERIMENT DETAILS | |
==================== | |
ID: {experiment['id']} | |
Name: {experiment['name']} | |
Description: {experiment['description']} | |
Status: {experiment['status']} | |
Created: {experiment['created_at']} | |
📈 METRICS COUNT: {len(experiment['metrics'])} | |
📋 PARAMETERS COUNT: {len(experiment['parameters'])} | |
📦 ARTIFACTS COUNT: {len(experiment['artifacts'])} | |
🔧 PARAMETERS: | |
{json.dumps(experiment['parameters'], indent=2)} | |
📊 LATEST METRICS: | |
""" | |
if experiment['metrics']: | |
latest_metrics = experiment['metrics'][-1] | |
details += f"Step: {latest_metrics.get('step', 'N/A')}\n" | |
details += f"Timestamp: {latest_metrics.get('timestamp', 'N/A')}\n" | |
details += f"Metrics: {json.dumps(latest_metrics.get('metrics', {}), indent=2)}" | |
else: | |
details += "No metrics logged yet." | |
return details | |
else: | |
return f"❌ Experiment {experiment_id} not found" | |
except Exception as e: | |
return f"❌ Error getting experiment details: {str(e)}" | |
def list_experiments_interface() -> str: | |
"""List all experiments with details""" | |
try: | |
experiments_info = trackio_space.list_experiments() | |
experiments = trackio_space.experiments | |
if not experiments: | |
return "📭 No experiments found. Create one first!" | |
result = f"📋 EXPERIMENTS OVERVIEW\n{'='*50}\n" | |
result += f"Total Experiments: {len(experiments)}\n" | |
result += f"Current Experiment: {experiments_info['current_experiment']}\n\n" | |
for exp_id, exp_data in experiments.items(): | |
status_emoji = { | |
'running': '🟢', | |
'completed': '✅', | |
'failed': '❌', | |
'paused': '⏸️' | |
}.get(exp_data['status'], '❓') | |
result += f"{status_emoji} {exp_id}\n" | |
result += f" Name: {exp_data['name']}\n" | |
result += f" Status: {exp_data['status']}\n" | |
result += f" Created: {exp_data['created_at']}\n" | |
result += f" Metrics: {len(exp_data['metrics'])} entries\n" | |
result += f" Parameters: {len(exp_data['parameters'])} entries\n" | |
result += f" Artifacts: {len(exp_data['artifacts'])} entries\n\n" | |
return result | |
except Exception as e: | |
return f"❌ Error listing experiments: {str(e)}" | |
def update_experiment_status_interface(experiment_id: str, status: str) -> str: | |
"""Update experiment status""" | |
try: | |
trackio_space.update_experiment_status(experiment_id, status) | |
return f"✅ Experiment {experiment_id} status updated to {status}" | |
except Exception as e: | |
return f"❌ Error updating experiment status: {str(e)}" | |
def create_metrics_plot(experiment_id: str, metric_name: str = "loss") -> go.Figure: | |
"""Create a plot for a specific metric""" | |
try: | |
df = get_metrics_dataframe(experiment_id) | |
if df.empty: | |
# Return empty plot | |
fig = go.Figure() | |
fig.add_annotation( | |
text="No metrics data available", | |
xref="paper", yref="paper", | |
x=0.5, y=0.5, showarrow=False | |
) | |
return fig | |
if metric_name not in df.columns: | |
# Show available metrics | |
available_metrics = [col for col in df.columns if col not in ['step', 'timestamp']] | |
fig = go.Figure() | |
fig.add_annotation( | |
text=f"Available metrics: {', '.join(available_metrics)}", | |
xref="paper", yref="paper", | |
x=0.5, y=0.5, showarrow=False | |
) | |
return fig | |
fig = px.line(df, x='step', y=metric_name, title=f'{metric_name} over time') | |
fig.update_layout( | |
xaxis_title="Training Step", | |
yaxis_title=metric_name.title(), | |
hovermode='x unified' | |
) | |
return fig | |
except Exception as e: | |
fig = go.Figure() | |
fig.add_annotation( | |
text=f"Error creating plot: {str(e)}", | |
xref="paper", yref="paper", | |
x=0.5, y=0.5, showarrow=False | |
) | |
return fig | |
def create_experiment_comparison(experiment_ids: str) -> go.Figure: | |
"""Compare multiple experiments""" | |
try: | |
exp_ids = [exp_id.strip() for exp_id in experiment_ids.split(',')] | |
fig = go.Figure() | |
for exp_id in exp_ids: | |
df = get_metrics_dataframe(exp_id) | |
if not df.empty and 'loss' in df.columns: | |
fig.add_trace(go.Scatter( | |
x=df['step'], | |
y=df['loss'], | |
mode='lines+markers', | |
name=f"{exp_id} - Loss", | |
line=dict(width=2) | |
)) | |
fig.update_layout( | |
title="Experiment Comparison - Loss", | |
xaxis_title="Training Step", | |
yaxis_title="Loss", | |
hovermode='x unified' | |
) | |
return fig | |
except Exception as e: | |
fig = go.Figure() | |
fig.add_annotation( | |
text=f"Error creating comparison: {str(e)}", | |
xref="paper", yref="paper", | |
x=0.5, y=0.5, showarrow=False | |
) | |
return fig | |
def simulate_training_data(experiment_id: str): | |
"""Simulate training data for demonstration""" | |
try: | |
# Simulate some realistic training metrics | |
for step in range(0, 1000, 50): | |
# Simulate loss decreasing over time | |
loss = 2.0 * np.exp(-step / 500) + 0.1 * np.random.random() | |
accuracy = 0.3 + 0.6 * (1 - np.exp(-step / 300)) + 0.05 * np.random.random() | |
lr = 3.5e-6 * (0.9 ** (step // 200)) | |
metrics = { | |
"loss": round(loss, 4), | |
"accuracy": round(accuracy, 4), | |
"learning_rate": round(lr, 8), | |
"gpu_memory": round(20 + 5 * np.random.random(), 2), | |
"training_time": round(0.5 + 0.2 * np.random.random(), 3) | |
} | |
trackio_space.log_metrics(experiment_id, metrics, step) | |
return f"✅ Simulated training data for experiment {experiment_id}\nAdded 20 metric entries (steps 0-950)" | |
except Exception as e: | |
return f"❌ Error simulating data: {str(e)}" | |
def create_demo_experiment(): | |
"""Create a demo experiment with training data""" | |
try: | |
# Create demo experiment | |
experiment = trackio_space.create_experiment( | |
"demo_smollm3_training", | |
"Demo experiment with simulated training data" | |
) | |
experiment_id = experiment['id'] | |
# Add some demo parameters | |
parameters = { | |
"model_name": "HuggingFaceTB/SmolLM3-3B", | |
"batch_size": 8, | |
"learning_rate": 3.5e-6, | |
"max_iters": 18000, | |
"mixed_precision": "bf16", | |
"dataset": "legmlai/openhermes-fr" | |
} | |
trackio_space.log_parameters(experiment_id, parameters) | |
# Add demo training data | |
simulate_training_data(experiment_id) | |
return f"✅ Demo experiment created: {experiment_id}\nYou can now test the visualization with this experiment!" | |
except Exception as e: | |
return f"❌ Error creating demo experiment: {str(e)}" | |
# Create Gradio interface | |
with gr.Blocks(title="Trackio - Experiment Tracking", theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# 🚀 Trackio Experiment Tracking & Monitoring") | |
gr.Markdown("Monitor and track your ML experiments with real-time visualization!") | |
with gr.Tabs(): | |
# Configuration Tab | |
with gr.Tab("⚙️ Configuration"): | |
gr.Markdown("### Configure HF Datasets Connection") | |
gr.Markdown("Set your Hugging Face token and dataset repository for persistent experiment storage.") | |
with gr.Row(): | |
with gr.Column(): | |
hf_token_input = gr.Textbox( | |
label="Hugging Face Token", | |
placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", | |
type="password", | |
info="Your HF token for dataset access (optional - will use environment variable if not set)" | |
) | |
dataset_repo_input = gr.Textbox( | |
label="Dataset Repository", | |
placeholder="your-username/your-dataset-name", | |
value=os.environ.get('TRACKIO_DATASET_REPO', 'trackio-experiments'), | |
info="HF Dataset repository for experiment storage" | |
) | |
with gr.Row(): | |
update_config_btn = gr.Button("Update Configuration", variant="primary") | |
test_connection_btn = gr.Button("Test Connection", variant="secondary") | |
create_repo_btn = gr.Button("Create Dataset", variant="success") | |
gr.Markdown("### Current Configuration") | |
current_config_output = gr.Textbox( | |
label="Status", | |
lines=8, | |
interactive=False, | |
value=f"📊 Dataset: {trackio_space.dataset_repo}\n🔑 HF Token: {'Set' if trackio_space.hf_token else 'Not set'}\n📈 Experiments: {len(trackio_space.experiments)}" | |
) | |
with gr.Column(): | |
gr.Markdown("### Configuration Help") | |
gr.Markdown(""" | |
**Getting Your HF Token:** | |
1. Go to [Hugging Face Settings](https://huggingface.co/settings/tokens) | |
2. Click "New token" | |
3. Give it a name (e.g., "Trackio Access") | |
4. Select "Write" permissions | |
5. Copy the token and paste it above | |
**Dataset Repository:** | |
- Format: `username/dataset-name` | |
- Examples: `tonic/trackio-experiments`, `your-username/my-experiments` | |
- Use "Create Dataset" button to create a new repository | |
**Environment Variables:** | |
You can also set these as environment variables: | |
- `HF_TOKEN`: Your Hugging Face token | |
- `TRACKIO_DATASET_REPO`: Dataset repository | |
**Actions:** | |
- **Update Configuration**: Apply new settings and reload experiments | |
- **Test Connection**: Verify access to the dataset repository | |
- **Create Dataset**: Create a new dataset repository if it doesn't exist | |
""") | |
update_config_btn.click( | |
update_trackio_config, | |
inputs=[hf_token_input, dataset_repo_input], | |
outputs=current_config_output | |
) | |
test_connection_btn.click( | |
test_dataset_connection, | |
inputs=[hf_token_input, dataset_repo_input], | |
outputs=current_config_output | |
) | |
create_repo_btn.click( | |
create_dataset_repository, | |
inputs=[hf_token_input, dataset_repo_input], | |
outputs=current_config_output | |
) | |
# Create Experiment Tab | |
with gr.Tab("Create Experiment"): | |
gr.Markdown("### Create a New Experiment") | |
with gr.Row(): | |
with gr.Column(): | |
experiment_name = gr.Textbox( | |
label="Experiment Name", | |
placeholder="my_smollm3_finetune", | |
value="smollm3_finetune" | |
) | |
experiment_description = gr.Textbox( | |
label="Description", | |
placeholder="Fine-tuning SmolLM3 model on custom dataset", | |
value="SmolLM3 fine-tuning experiment" | |
) | |
create_btn = gr.Button("Create Experiment", variant="primary") | |
with gr.Column(): | |
create_output = gr.Textbox( | |
label="Result", | |
lines=5, | |
interactive=False | |
) | |
create_btn.click( | |
create_experiment_interface, | |
inputs=[experiment_name, experiment_description], | |
outputs=create_output | |
) | |
# Log Metrics Tab | |
with gr.Tab("Log Metrics"): | |
gr.Markdown("### Log Training Metrics") | |
with gr.Row(): | |
with gr.Column(): | |
metrics_exp_id = gr.Textbox( | |
label="Experiment ID", | |
placeholder="exp_20231201_143022" | |
) | |
metrics_json = gr.Textbox( | |
label="Metrics (JSON)", | |
placeholder='{"loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5}', | |
value='{"loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5, "gpu_memory": 22.5}' | |
) | |
metrics_step = gr.Textbox( | |
label="Step (optional)", | |
placeholder="100" | |
) | |
log_metrics_btn = gr.Button("Log Metrics", variant="primary") | |
with gr.Column(): | |
metrics_output = gr.Textbox( | |
label="Result", | |
lines=5, | |
interactive=False | |
) | |
log_metrics_btn.click( | |
log_metrics_interface, | |
inputs=[metrics_exp_id, metrics_json, metrics_step], | |
outputs=metrics_output | |
) | |
# Log Parameters Tab | |
with gr.Tab("Log Parameters"): | |
gr.Markdown("### Log Experiment Parameters") | |
with gr.Row(): | |
with gr.Column(): | |
params_exp_id = gr.Textbox( | |
label="Experiment ID", | |
placeholder="exp_20231201_143022" | |
) | |
parameters_json = gr.Textbox( | |
label="Parameters (JSON)", | |
placeholder='{"learning_rate": 2e-5, "batch_size": 4}', | |
value='{"learning_rate": 3.5e-6, "batch_size": 8, "model_name": "HuggingFaceTB/SmolLM3-3B", "max_iters": 18000, "mixed_precision": "bf16"}' | |
) | |
log_params_btn = gr.Button("Log Parameters", variant="primary") | |
with gr.Column(): | |
params_output = gr.Textbox( | |
label="Result", | |
lines=5, | |
interactive=False | |
) | |
log_params_btn.click( | |
log_parameters_interface, | |
inputs=[params_exp_id, parameters_json], | |
outputs=params_output | |
) | |
# View Experiments Tab | |
with gr.Tab("View Experiments"): | |
gr.Markdown("### View Experiment Details") | |
with gr.Row(): | |
with gr.Column(): | |
view_exp_id = gr.Textbox( | |
label="Experiment ID", | |
placeholder="exp_20231201_143022" | |
) | |
view_btn = gr.Button("View Experiment", variant="primary") | |
list_btn = gr.Button("List All Experiments", variant="secondary") | |
with gr.Column(): | |
view_output = gr.Textbox( | |
label="Experiment Details", | |
lines=20, | |
interactive=False | |
) | |
view_btn.click( | |
get_experiment_details, | |
inputs=[view_exp_id], | |
outputs=view_output | |
) | |
list_btn.click( | |
list_experiments_interface, | |
inputs=[], | |
outputs=view_output | |
) | |
# Visualization Tab | |
with gr.Tab("📊 Visualizations"): | |
gr.Markdown("### Training Metrics Visualization") | |
with gr.Row(): | |
with gr.Column(): | |
plot_exp_id = gr.Textbox( | |
label="Experiment ID", | |
placeholder="exp_20231201_143022" | |
) | |
metric_dropdown = gr.Dropdown( | |
label="Metric to Plot", | |
choices=["loss", "accuracy", "learning_rate", "gpu_memory", "training_time"], | |
value="loss" | |
) | |
plot_btn = gr.Button("Create Plot", variant="primary") | |
with gr.Column(): | |
plot_output = gr.Plot(label="Training Metrics") | |
plot_btn.click( | |
create_metrics_plot, | |
inputs=[plot_exp_id, metric_dropdown], | |
outputs=plot_output | |
) | |
gr.Markdown("### Experiment Comparison") | |
with gr.Row(): | |
with gr.Column(): | |
comparison_exp_ids = gr.Textbox( | |
label="Experiment IDs (comma-separated)", | |
placeholder="exp_1,exp_2,exp_3" | |
) | |
comparison_btn = gr.Button("Compare Experiments", variant="primary") | |
with gr.Column(): | |
comparison_plot = gr.Plot(label="Experiment Comparison") | |
comparison_btn.click( | |
create_experiment_comparison, | |
inputs=[comparison_exp_ids], | |
outputs=comparison_plot | |
) | |
# Demo Data Tab | |
with gr.Tab("🎯 Demo Data"): | |
gr.Markdown("### Generate Demo Training Data") | |
gr.Markdown("Use this to simulate training data for testing the interface") | |
with gr.Row(): | |
with gr.Column(): | |
demo_exp_id = gr.Textbox( | |
label="Experiment ID", | |
placeholder="exp_20231201_143022" | |
) | |
demo_btn = gr.Button("Generate Demo Data", variant="primary") | |
create_demo_btn = gr.Button("Create Demo Experiment", variant="secondary") | |
with gr.Column(): | |
demo_output = gr.Textbox( | |
label="Result", | |
lines=5, | |
interactive=False | |
) | |
demo_btn.click( | |
simulate_training_data, | |
inputs=[demo_exp_id], | |
outputs=demo_output | |
) | |
create_demo_btn.click( | |
create_demo_experiment, | |
inputs=[], | |
outputs=demo_output | |
) | |
# Update Status Tab | |
with gr.Tab("Update Status"): | |
gr.Markdown("### Update Experiment Status") | |
with gr.Row(): | |
with gr.Column(): | |
status_exp_id = gr.Textbox( | |
label="Experiment ID", | |
placeholder="exp_20231201_143022" | |
) | |
status_dropdown = gr.Dropdown( | |
label="Status", | |
choices=["running", "completed", "failed", "paused"], | |
value="running" | |
) | |
update_status_btn = gr.Button("Update Status", variant="primary") | |
with gr.Column(): | |
status_output = gr.Textbox( | |
label="Result", | |
lines=3, | |
interactive=False | |
) | |
update_status_btn.click( | |
update_experiment_status_interface, | |
inputs=[status_exp_id, status_dropdown], | |
outputs=status_output | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() |