SmolFactory / interface.py
Tonic's picture
improves interface flow
a8fc78d
raw
history blame
41.9 kB
#!/usr/bin/env python3
"""
Gradio Interface for SmolLM3/GPT-OSS Fine-tuning Pipeline
This app mirrors the core flow of launch.sh with a click-and-run UI.
Tokens are read from environment variables:
- HF_WRITE_TOKEN (required)
- HF_READ_TOKEN (optional; used to switch the Trackio Space token after training)
Key steps (configurable via UI):
1) Optional HF Dataset repo setup for Trackio
2) Optional Trackio Space deployment
3) Training (SmolLM3 or GPT-OSS)
4) Push trained model to the HF Hub
5) Optional switch Trackio HF_TOKEN to read token
This uses the existing scripts in scripts/ and config/ to avoid code duplication.
"""
from __future__ import annotations
import os
import sys
import time
import json
import shlex
import traceback
import importlib.util
import re
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
from typing import Dict, Any, Generator, Optional, Tuple
# Third-party
try:
import gradio as gr # type: ignore
except Exception as _e:
raise RuntimeError(
"Gradio is required. Please install it first: pip install gradio"
) from _e
# --------------------------------------------------------------------------------------
# Utilities
# --------------------------------------------------------------------------------------
PROJECT_ROOT = Path(__file__).resolve().parent
def mask_token(token: Optional[str]) -> str:
if not token:
return "<not set>"
token = str(token)
if len(token) <= 8:
return "*" * len(token)
return f"{token[:4]}****{token[-4:]}"
def get_python() -> str:
return sys.executable or "python"
def get_username_from_token(token: str) -> Optional[str]:
try:
from huggingface_hub import HfApi # type: ignore
api = HfApi(token=token)
info = api.whoami()
if isinstance(info, dict):
return info.get("name") or info.get("username")
if isinstance(info, str):
return info
except Exception:
return None
return None
def detect_nvidia_driver() -> Tuple[bool, str]:
"""Detect NVIDIA driver/GPU presence with multiple strategies.
Returns (available, human_message).
"""
# 1) Try torch CUDA
try:
import torch # type: ignore
if torch.cuda.is_available():
try:
num = torch.cuda.device_count()
names = [torch.cuda.get_device_name(i) for i in range(num)]
return True, f"NVIDIA GPU detected: {', '.join(names)}"
except Exception:
return True, "NVIDIA GPU detected (torch.cuda available)"
except Exception:
pass
# 2) Try NVML via pynvml
try:
import pynvml # type: ignore
try:
pynvml.nvmlInit()
cnt = pynvml.nvmlDeviceGetCount()
names = []
for i in range(cnt):
h = pynvml.nvmlDeviceGetHandleByIndex(i)
names.append(pynvml.nvmlDeviceGetName(h).decode("utf-8", errors="ignore"))
drv = pynvml.nvmlSystemGetDriverVersion().decode("utf-8", errors="ignore")
pynvml.nvmlShutdown()
if cnt > 0:
return True, f"NVIDIA driver {drv}; GPUs: {', '.join(names)}"
except Exception:
pass
except Exception:
pass
# 3) Try nvidia-smi
try:
import subprocess
res = subprocess.run(["nvidia-smi", "-L"], capture_output=True, text=True, timeout=3)
if res.returncode == 0 and res.stdout.strip():
return True, res.stdout.strip().splitlines()[0]
except Exception:
pass
return False, "No NVIDIA driver/GPU detected"
def duplicate_space_hint() -> str:
space_id = os.environ.get("SPACE_ID") or os.environ.get("HF_SPACE_ID")
if space_id:
space_url = f"https://huggingface.co/spaces/{space_id}"
dup_url = f"{space_url}?duplicate=true"
return (
f"ℹ️ No NVIDIA driver detected. If you're on Hugging Face Spaces, "
f"please duplicate this Space to GPU hardware: [Duplicate this Space]({dup_url})."
)
return (
"ℹ️ No NVIDIA driver detected. To enable training, run on a machine with an NVIDIA GPU/driver "
"or duplicate this Space on Hugging Face with GPU hardware."
)
def markdown_links_to_html(text: str) -> str:
"""Convert simple Markdown links [text](url) to HTML anchors for UI rendering."""
try:
return re.sub(r"\[([^\]]+)\]\(([^)]+)\)", r'<a href="\2" target="_blank" rel="noopener noreferrer">\1</a>', text)
except Exception:
return text
def _write_generated_config(filename: str, content: str) -> Path:
"""Write a generated config under config/ and return the full path."""
cfg_dir = PROJECT_ROOT / "config"
cfg_dir.mkdir(parents=True, exist_ok=True)
path = cfg_dir / filename
with open(path, "w", encoding="utf-8") as f:
f.write(content)
return path
def generate_medical_o1_config_file(
dataset_config: str,
system_message: Optional[str],
developer_message: Optional[str],
num_train_epochs: float,
batch_size: int,
gradient_accumulation_steps: int,
learning_rate: float,
max_seq_length: int,
) -> Path:
"""Create a GPT-OSS Medical o1 SFT config file from user inputs."""
# Sanitize quotes in messages
def _q(s: Optional[str]) -> str:
if s is None or s == "":
return "None"
return repr(s)
py = f"""
from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig
config = GPTOSSEnhancedCustomConfig(
dataset_name="FreedomIntelligence/medical-o1-reasoning-SFT",
dataset_config={repr(dataset_config)},
dataset_split="train",
dataset_format="medical_o1_sft",
# Field mapping and prefixes
input_field="Question",
target_field="Response",
question_field="Question",
reasoning_field="Complex_CoT",
response_field="Response",
reason_prefix="Reasoning: ",
answer_prefix="Final Answer: ",
# Optional context
system_message={_q(system_message)},
developer_message={_q(developer_message)},
# Training hyperparameters
num_train_epochs={num_train_epochs},
batch_size={batch_size},
gradient_accumulation_steps={gradient_accumulation_steps},
learning_rate={learning_rate},
min_lr=2e-5,
weight_decay=0.01,
warmup_ratio=0.03,
# Sequence length
max_seq_length={max_seq_length},
# Precision & performance
fp16=False,
bf16=True,
dataloader_num_workers=4,
dataloader_pin_memory=True,
dataloader_prefetch_factor=2,
group_by_length=True,
remove_unused_columns=True,
# LoRA & quantization
use_lora=True,
lora_config={
"r": 16,
"lora_alpha": 32,
"lora_dropout": 0.05,
"target_modules": "all-linear",
"target_parameters": [
"7.mlp.experts.gate_up_proj",
"7.mlp.experts.down_proj",
"15.mlp.experts.gate_up_proj",
"15.mlp.experts.down_proj",
"23.mlp.experts.gate_up_proj",
"23.mlp.experts.down_proj",
],
"bias": "none",
"task_type": "CAUSAL_LM",
},
use_quantization=True,
quantization_config={
"dequantize": True,
"load_in_4bit": False,
},
# Logging & evaluation
eval_strategy="steps",
eval_steps=100,
logging_steps=10,
save_strategy="steps",
save_steps=500,
save_total_limit=3,
metric_for_best_model="eval_loss",
greater_is_better=False,
)
"""
return _write_generated_config("_generated_gpt_oss_medical_o1_sft.py", py)
def generate_gpt_oss_custom_config_file(
dataset_name: str,
dataset_split: str,
dataset_format: str,
input_field: str,
target_field: Optional[str],
system_message: Optional[str],
developer_message: Optional[str],
model_identity: Optional[str],
max_samples: Optional[int],
min_length: int,
max_length: Optional[int],
num_train_epochs: float,
batch_size: int,
gradient_accumulation_steps: int,
learning_rate: float,
min_lr: float,
weight_decay: float,
warmup_ratio: float,
max_seq_length: int,
lora_r: int,
lora_alpha: int,
lora_dropout: float,
mixed_precision: str, # "bf16"|"fp16"|"fp32"
num_workers: int,
quantization_type: str, # "mxfp4"|"bnb4"|"none"
max_grad_norm: float,
logging_steps: int,
eval_steps: int,
save_steps: int,
) -> Path:
# Precision flags
if mixed_precision.lower() == "bf16":
fp16_flag = False
bf16_flag = True
elif mixed_precision.lower() == "fp16":
fp16_flag = True
bf16_flag = False
else:
fp16_flag = False
bf16_flag = False
# Quantization flags/config
if quantization_type == "mxfp4":
use_quant = True
quant_cfg = '{"dequantize": True, "load_in_4bit": False}'
elif quantization_type == "bnb4":
use_quant = True
quant_cfg = '{"dequantize": False, "load_in_4bit": True, "bnb_4bit_compute_dtype": "bfloat16", "bnb_4bit_use_double_quant": True, "bnb_4bit_quant_type": "nf4"}'
else:
use_quant = False
quant_cfg = '{"dequantize": False, "load_in_4bit": False}'
def _q(s: Optional[str]) -> str:
if s is None or s == "":
return "None"
return repr(s)
py = f"""
from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig
config = GPTOSSEnhancedCustomConfig(
# Dataset
dataset_name={repr(dataset_name)},
dataset_split={repr(dataset_split)},
dataset_format={repr(dataset_format)},
input_field={repr(input_field)},
target_field={repr(target_field)} if {repr(target_field)} != 'None' else None,
system_message={_q(system_message)},
developer_message={_q(developer_message)},
max_samples={repr(max_samples)} if {repr(max_samples)} != 'None' else None,
min_length={min_length},
max_length={repr(max_length)} if {repr(max_length)} != 'None' else None,
# Training hyperparameters
num_train_epochs={num_train_epochs},
batch_size={batch_size},
gradient_accumulation_steps={gradient_accumulation_steps},
learning_rate={learning_rate},
min_lr={min_lr},
weight_decay={weight_decay},
warmup_ratio={warmup_ratio},
max_grad_norm={max_grad_norm},
# Model
max_seq_length={max_seq_length},
# Precision
fp16={str(fp16_flag)},
bf16={str(bf16_flag)},
# LoRA
lora_config={{
"r": {lora_r},
"lora_alpha": {lora_alpha},
"lora_dropout": {lora_dropout},
"target_modules": "all-linear",
"bias": "none",
"task_type": "CAUSAL_LM",
}},
# Quantization
use_quantization={str(use_quant)},
quantization_config={quant_cfg},
# Performance
dataloader_num_workers={num_workers},
dataloader_pin_memory=True,
group_by_length=True,
# Logging & eval
logging_steps={logging_steps},
eval_steps={eval_steps},
save_steps={save_steps},
# Chat template (Harmony)
chat_template_kwargs={{
"add_generation_prompt": True,
"tokenize": False,
"auto_insert_role": True,
"reasoning_effort": "medium",
"model_identity": {_q(model_identity) if _q(model_identity) != 'None' else repr('You are GPT-Tonic, a large language model trained by TonicAI.')},
"builtin_tools": [],
}},
)
"""
return _write_generated_config("_generated_gpt_oss_custom.py", py)
def generate_smollm3_custom_config_file(
model_name: str,
dataset_name: Optional[str],
max_seq_length: int,
batch_size: int,
gradient_accumulation_steps: int,
learning_rate: float,
save_steps: int,
eval_steps: int,
logging_steps: int,
filter_bad_entries: bool,
input_field: str,
target_field: str,
sample_size: Optional[int],
sample_seed: int,
trainer_type: str,
) -> Path:
# Create subclass to include dataset fields similar to other configs
def _bool(b: bool) -> str:
return "True" if b else "False"
ds_section = """
# HF Dataset configuration
dataset_name={}
dataset_split="train"
input_field={}
target_field={}
filter_bad_entries={}
bad_entry_field="bad_entry"
sample_size={}
sample_seed={}
""".format(
repr(dataset_name) if dataset_name else "None",
repr(input_field),
repr(target_field),
_bool(filter_bad_entries),
repr(sample_size) if sample_size is not None else "None",
sample_seed,
)
py = f"""
from dataclasses import dataclass
from typing import Optional
from config.train_smollm3 import SmolLM3Config
@dataclass
class SmolLM3GeneratedConfig(SmolLM3Config):
{ds_section}
config = SmolLM3GeneratedConfig(
trainer_type={repr(trainer_type.lower())},
model_name={repr(model_name)},
max_seq_length={max_seq_length},
use_flash_attention=True,
use_gradient_checkpointing=True,
batch_size={batch_size},
gradient_accumulation_steps={gradient_accumulation_steps},
learning_rate={learning_rate},
weight_decay=0.01,
warmup_steps=100,
max_iters=None,
eval_interval={eval_steps},
log_interval={logging_steps},
save_interval={save_steps},
optimizer="adamw",
beta1=0.9,
beta2=0.95,
eps=1e-8,
scheduler="cosine",
min_lr=1e-6,
fp16=True,
bf16=False,
save_steps={save_steps},
eval_steps={eval_steps},
logging_steps={logging_steps},
save_total_limit=3,
eval_strategy="steps",
metric_for_best_model="eval_loss",
greater_is_better=False,
load_best_model_at_end=True,
)
"""
return _write_generated_config("_generated_smollm3_custom.py", py)
def ensure_dataset_repo(username: str, dataset_name: str, token: str) -> Tuple[str, bool, str]:
"""Create or ensure dataset repo exists. Returns (repo_id, created_or_exists, message)."""
from huggingface_hub import create_repo # type: ignore
repo_id = f"{username}/{dataset_name}"
try:
create_repo(repo_id=repo_id, repo_type="dataset", token=token, exist_ok=True, private=False)
return repo_id, True, f"Dataset repo ready: {repo_id}"
except Exception as e:
return repo_id, False, f"Failed to create dataset repo {repo_id}: {e}"
def import_config_object(config_path: Path) -> Optional[Any]:
"""Import a config file and return its 'config' object if present, else None."""
try:
spec = importlib.util.spec_from_file_location("config_module", str(config_path))
if not spec or not spec.loader:
return None
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module) # type: ignore
if hasattr(module, "config"):
return getattr(module, "config")
return None
except Exception:
return None
def run_command_stream(args: list[str], env: Dict[str, str], cwd: Optional[Path] = None) -> Generator[str, None, int]:
"""Run a command and yield stdout/stderr lines as they arrive. Returns exit code at the end."""
import subprocess
yield f"$ {' '.join(shlex.quote(a) for a in ([get_python()] + args))}"
process = subprocess.Popen(
[get_python()] + args,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
env=env,
cwd=str(cwd or PROJECT_ROOT),
bufsize=1,
universal_newlines=True,
)
assert process.stdout is not None
for line in iter(process.stdout.readline, ""):
yield line.rstrip()
process.stdout.close()
code = process.wait()
yield f"[exit_code={code}]"
return code
# --------------------------------------------------------------------------------------
# Configuration Mappings (mirror launch.sh)
# --------------------------------------------------------------------------------------
SMOL_CONFIGS = {
"Basic Training": {
"config_file": "config/train_smollm3.py",
"default_model": "HuggingFaceTB/SmolLM3-3B",
},
"H100 Lightweight (Rapid)": {
"config_file": "config/train_smollm3_h100_lightweight.py",
"default_model": "HuggingFaceTB/SmolLM3-3B",
},
"A100 Large Scale": {
"config_file": "config/train_smollm3_openhermes_fr_a100_large.py",
"default_model": "HuggingFaceTB/SmolLM3-3B",
},
"Multiple Passes": {
"config_file": "config/train_smollm3_openhermes_fr_a100_multiple_passes.py",
"default_model": "HuggingFaceTB/SmolLM3-3B",
},
}
GPT_OSS_CONFIGS = {
"GPT-OSS Basic Training": {
"config_file": "config/train_gpt_oss_basic.py",
"default_model": "openai/gpt-oss-20b",
},
"GPT-OSS H100 Optimized": {
"config_file": "config/train_gpt_oss_h100_optimized.py",
"default_model": "openai/gpt-oss-20b",
},
"GPT-OSS Multilingual Reasoning": {
"config_file": "config/train_gpt_oss_multilingual_reasoning.py",
"default_model": "openai/gpt-oss-20b",
},
"GPT-OSS Memory Optimized": {
"config_file": "config/train_gpt_oss_memory_optimized.py",
"default_model": "openai/gpt-oss-20b",
},
"GPT-OSS OpenHermes-FR (Recommended)": {
"config_file": "config/train_gpt_oss_openhermes_fr.py",
"default_model": "openai/gpt-oss-20b",
},
"GPT-OSS OpenHermes-FR Memory Optimized": {
"config_file": "config/train_gpt_oss_openhermes_fr_memory_optimized.py",
"default_model": "openai/gpt-oss-20b",
},
# Custom dataset and medical SFT can be added later as advanced UI panels
}
def get_config_map(family: str) -> Dict[str, Dict[str, str]]:
return SMOL_CONFIGS if family == "SmolLM3" else GPT_OSS_CONFIGS
# --------------------------------------------------------------------------------------
# Pipeline Orchestration
# --------------------------------------------------------------------------------------
@dataclass
class PipelineInputs:
model_family: str
config_choice: str
trainer_type: str # "SFT" | "DPO"
monitoring_mode: str # "both" | "trackio" | "dataset" | "none"
experiment_name: str
repo_short: str
author_name: str
model_description: str
trackio_space_name: Optional[str]
deploy_trackio_space: bool
create_dataset_repo: bool
push_to_hub: bool
switch_to_read_after: bool
scheduler_override: Optional[str]
min_lr: Optional[float]
min_lr_rate: Optional[float]
def make_defaults(model_family: str) -> Tuple[str, str]:
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
family_slug = "gpt-oss" if model_family == "GPT-OSS" else "smollm3"
exp = f"smolfactory-{family_slug}_{ts}"
repo_short = f"smolfactory-{datetime.now().strftime('%Y%m%d')}"
return exp, repo_short
def run_pipeline(params: PipelineInputs) -> Generator[str, None, None]:
# Tokens from environment
write_token = os.environ.get("HF_WRITE_TOKEN") or os.environ.get("HF_TOKEN")
read_token = os.environ.get("HF_READ_TOKEN")
if not write_token:
yield "❌ HF_WRITE_TOKEN (or HF_TOKEN) is not set in the environment."
return
# Resolve username
username = get_username_from_token(write_token) or os.environ.get("HF_USERNAME")
if not username:
yield "❌ Could not resolve Hugging Face username from token."
return
yield f"✅ Authenticated as: {username}"
# Compute Trackio URL if applicable
trackio_url: Optional[str] = None
if params.monitoring_mode != "none" and params.trackio_space_name:
trackio_url = f"https://huggingface.co/spaces/{username}/{params.trackio_space_name}"
yield f"Trackio Space URL: {trackio_url}"
# Decide space deploy token per monitoring mode
space_deploy_token = write_token if params.monitoring_mode in ("both", "trackio") else (read_token or write_token)
# Dataset repo setup
dataset_repo = f"{username}/trackio-experiments"
if params.create_dataset_repo and params.monitoring_mode != "none":
yield f"Creating/ensuring dataset repo exists: {dataset_repo}"
rid, ok, msg = ensure_dataset_repo(username, "trackio-experiments", write_token)
yield ("✅ " if ok else "⚠️ ") + msg
dataset_repo = rid
# Resolve config file and model name
conf_map = get_config_map(params.model_family)
if params.config_choice not in conf_map:
yield f"❌ Unknown config choice: {params.config_choice}"
return
config_file = PROJECT_ROOT / conf_map[params.config_choice]["config_file"]
base_model_fallback = conf_map[params.config_choice]["default_model"]
if not config_file.exists():
yield f"❌ Config file not found: {config_file}"
return
cfg_obj = import_config_object(config_file)
base_model = getattr(cfg_obj, "model_name", base_model_fallback) if cfg_obj else base_model_fallback
dataset_name = getattr(cfg_obj, "dataset_name", None) if cfg_obj else None
batch_size = getattr(cfg_obj, "batch_size", None) if cfg_obj else None
learning_rate = getattr(cfg_obj, "learning_rate", None) if cfg_obj else None
max_seq_length = getattr(cfg_obj, "max_seq_length", None) if cfg_obj else None
# Prepare env for subprocesses
env = os.environ.copy()
env["HF_TOKEN"] = write_token
env["HUGGING_FACE_HUB_TOKEN"] = write_token
env["HF_USERNAME"] = username
env["TRACKIO_DATASET_REPO"] = dataset_repo
env["MONITORING_MODE"] = params.monitoring_mode
# Optional Trackio Space deployment
if params.deploy_trackio_space and params.monitoring_mode != "none" and params.trackio_space_name:
yield f"\n=== Deploying Trackio Space: {params.trackio_space_name} ==="
# deploy_trackio_space.py expects: space_name, token, git_email, git_name, dataset_repo
args = [
str(PROJECT_ROOT / "scripts/trackio_tonic/deploy_trackio_space.py"),
params.trackio_space_name,
space_deploy_token,
f"{username}@users.noreply.hf.co",
username,
dataset_repo,
]
for line in run_command_stream(args, env, cwd=PROJECT_ROOT / "scripts/trackio_tonic"):
yield line
# Training output directory
out_dir = PROJECT_ROOT / "outputs" / f"{params.experiment_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
out_dir.mkdir(parents=True, exist_ok=True)
yield f"\nOutput directory: {out_dir}"
# Scheduler overrides (GPT-OSS only)
if params.model_family == "GPT-OSS" and params.scheduler_override:
env["GPT_OSS_SCHEDULER"] = params.scheduler_override
if params.min_lr is not None:
env["GPT_OSS_MIN_LR"] = str(params.min_lr)
if params.min_lr_rate is not None:
env["GPT_OSS_MIN_LR_RATE"] = str(params.min_lr_rate)
# Start training
yield f"\n=== Starting Training ({params.model_family}) ==="
if params.model_family == "GPT-OSS":
args = [
str(PROJECT_ROOT / "scripts/training/train_gpt_oss.py"),
"--config", str(config_file),
"--experiment-name", params.experiment_name,
"--output-dir", str(out_dir),
"--trackio-url", trackio_url or "",
"--trainer-type", params.trainer_type.lower(),
]
else:
args = [
str(PROJECT_ROOT / "scripts/training/train.py"),
"--config", str(config_file),
"--experiment-name", params.experiment_name,
"--output-dir", str(out_dir),
"--trackio-url", trackio_url or "",
"--trainer-type", params.trainer_type.lower(),
]
# Stream training logs
train_failed = False
for line in run_command_stream(args, env):
yield line
if line.strip().startswith("[exit_code=") and not line.strip().endswith("[exit_code=0]"):
train_failed = True
if train_failed:
yield "❌ Training failed. Aborting remaining steps."
return
# Push to Hub
if params.push_to_hub:
yield "\n=== Pushing Model to Hugging Face Hub ==="
repo_name = f"{username}/{params.repo_short}"
if params.model_family == "GPT-OSS":
push_args = [
str(PROJECT_ROOT / "scripts/model_tonic/push_gpt_oss_to_huggingface.py"),
str(out_dir),
repo_name,
"--token", write_token,
"--trackio-url", trackio_url or "",
"--experiment-name", params.experiment_name,
"--dataset-repo", dataset_repo,
"--author-name", params.author_name or username,
"--model-description", params.model_description,
"--training-config-type", params.config_choice,
"--model-name", base_model,
]
if dataset_name:
push_args += ["--dataset-name", str(dataset_name)]
if batch_size is not None:
push_args += ["--batch-size", str(batch_size)]
if learning_rate is not None:
push_args += ["--learning-rate", str(learning_rate)]
if max_seq_length is not None:
push_args += ["--max-seq-length", str(max_seq_length)]
push_args += ["--trainer-type", params.trainer_type]
else:
push_args = [
str(PROJECT_ROOT / "scripts/model_tonic/push_to_huggingface.py"),
str(out_dir),
repo_name,
"--token", write_token,
"--trackio-url", trackio_url or "",
"--experiment-name", params.experiment_name,
"--dataset-repo", dataset_repo,
"--author-name", params.author_name or username,
"--model-description", params.model_description,
"--training-config-type", params.config_choice,
"--model-name", base_model,
]
if dataset_name:
push_args += ["--dataset-name", str(dataset_name)]
if batch_size is not None:
push_args += ["--batch-size", str(batch_size)]
if learning_rate is not None:
push_args += ["--learning-rate", str(learning_rate)]
if max_seq_length is not None:
push_args += ["--max-seq-length", str(max_seq_length)]
push_args += ["--trainer-type", params.trainer_type]
for line in run_command_stream(push_args, env):
yield line
# Switch Space token to read-only (security)
if params.switch_to_read_after and params.monitoring_mode in ("both", "trackio") and params.trackio_space_name and read_token:
yield "\n=== Switching Trackio Space HF_TOKEN to READ token ==="
space_id = f"{username}/{params.trackio_space_name}"
sw_args = [
str(PROJECT_ROOT / "scripts/trackio_tonic/switch_to_read_token.py"),
space_id,
read_token,
write_token,
]
for line in run_command_stream(sw_args, env, cwd=PROJECT_ROOT / "scripts/trackio_tonic"):
yield line
elif params.switch_to_read_after and not read_token:
yield "⚠️ HF_READ_TOKEN not set; skipping token switch."
# Final summary
yield "\n🎉 Pipeline completed."
if params.monitoring_mode != "none" and trackio_url:
yield f"Trackio: {trackio_url}"
yield f"Model repo (if pushed): https://huggingface.co/{username}/{params.repo_short}"
yield f"Outputs: {out_dir}"
# --------------------------------------------------------------------------------------
# Gradio UI
# --------------------------------------------------------------------------------------
MODEL_FAMILIES = ["SmolLM3", "GPT-OSS"]
TRAINER_CHOICES = ["SFT", "DPO"]
MONITORING_CHOICES = ["both", "trackio", "dataset", "none"]
SCHEDULER_CHOICES = [None, "linear", "cosine", "cosine_with_min_lr", "constant"]
def ui_defaults(family: str) -> Tuple[str, str, str, str]:
exp, repo_short = make_defaults(family)
default_desc = (
"A fine-tuned GPT-OSS-20B model optimized for multilingual reasoning and instruction following."
if family == "GPT-OSS"
else "A fine-tuned SmolLM3-3B model optimized for instruction following and French language tasks."
)
trackio_space_name = f"trackio-monitoring-{datetime.now().strftime('%Y%m%d')}"
return exp, repo_short, default_desc, trackio_space_name
joinus = """
## Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
def on_family_change(family: str):
"""Update UI when the model family changes.
- Refresh available prebuilt configuration choices
- Reset defaults (experiment name, repo short, description, space name)
- Reveal the next step (trainer type)
"""
confs = list(get_config_map(family).keys())
exp, repo_short, desc, space = ui_defaults(family)
# Initial dataset information placeholder until a specific config is chosen
training_md = (
f"Select a training configuration for {family} to see details (dataset, batch size, etc.)."
)
# Update objects:
return (
gr.update(choices=confs, value=(confs[0] if confs else None)),
exp,
repo_short,
desc,
space,
training_md,
gr.update(choices=[], value=None),
gr.update(visible=True), # show step 2 (trainer)
gr.update(visible=False), # hide step 3 until trainer selected
gr.update(visible=False), # hide step 4 until monitoring selected
gr.update(visible=(family == "GPT-OSS")), # advanced (scheduler) visibility
)
def on_config_change(family: str, config_choice: str):
"""When a prebuilt configuration is selected, update dataset info and helpful details."""
if not config_choice:
return (
"",
gr.update(choices=[], value=None),
)
conf_map = get_config_map(family)
cfg_path = PROJECT_ROOT / conf_map[config_choice]["config_file"]
cfg_obj = import_config_object(cfg_path)
dataset_name = getattr(cfg_obj, "dataset_name", None) if cfg_obj else None
batch_size = getattr(cfg_obj, "batch_size", None) if cfg_obj else None
learning_rate = getattr(cfg_obj, "learning_rate", None) if cfg_obj else None
max_seq_length = getattr(cfg_obj, "max_seq_length", None) if cfg_obj else None
base_model = conf_map[config_choice]["default_model"]
md_lines = [
f"**Configuration**: {config_choice}",
f"**Base model**: {base_model}",
]
if dataset_name:
md_lines.append(f"**Dataset**: `{dataset_name}`")
if batch_size is not None:
md_lines.append(f"**Batch size**: {batch_size}")
if learning_rate is not None:
md_lines.append(f"**Learning rate**: {learning_rate}")
if max_seq_length is not None:
md_lines.append(f"**Max seq length**: {max_seq_length}")
training_md = "\n".join(md_lines)
# dataset selection (allow custom but prefill with the config's dataset if any)
ds_choices = [dataset_name] if dataset_name else []
return training_md, gr.update(choices=ds_choices, value=(dataset_name or None))
def on_trainer_selected(_: str):
"""Reveal monitoring step once trainer type is chosen."""
return gr.update(visible=True)
def on_monitoring_change(mode: str):
"""Reveal configuration/details step and adjust Trackio-related visibility by mode."""
show_trackio = mode in ("both", "trackio")
show_dataset_repo = mode != "none"
return (
gr.update(visible=True),
gr.update(visible=show_trackio), # trackio space name
gr.update(visible=show_trackio), # deploy trackio space
gr.update(visible=show_dataset_repo), # create dataset repo
)
def start_pipeline(
model_family: str,
config_choice: str,
trainer_type: str,
monitoring_mode: str,
experiment_name: str,
repo_short: str,
author_name: str,
model_description: str,
trackio_space_name: str,
deploy_trackio_space: bool,
create_dataset_repo: bool,
push_to_hub: bool,
switch_to_read_after: bool,
scheduler_override: Optional[str],
min_lr: Optional[float],
min_lr_rate: Optional[float],
) -> Generator[str, None, None]:
try:
params = PipelineInputs(
model_family=model_family,
config_choice=config_choice,
trainer_type=trainer_type,
monitoring_mode=monitoring_mode,
experiment_name=experiment_name,
repo_short=repo_short,
author_name=author_name,
model_description=model_description,
trackio_space_name=trackio_space_name or None,
deploy_trackio_space=deploy_trackio_space,
create_dataset_repo=create_dataset_repo,
push_to_hub=push_to_hub,
switch_to_read_after=switch_to_read_after,
scheduler_override=(scheduler_override or None),
min_lr=min_lr,
min_lr_rate=min_lr_rate,
)
# Show token presence
write_token = os.environ.get("HF_WRITE_TOKEN") or os.environ.get("HF_TOKEN")
read_token = os.environ.get("HF_READ_TOKEN")
yield f"HF_WRITE_TOKEN: {mask_token(write_token)}"
yield f"HF_READ_TOKEN: {mask_token(read_token)}"
# Run the orchestrated pipeline
for line in run_pipeline(params):
yield line
# Small delay for smoother streaming
time.sleep(0.01)
except Exception as e:
yield f"❌ Error: {e}"
tb = traceback.format_exc(limit=2)
yield tb
with gr.Blocks(title="SmolLM3 / GPT-OSS Fine-tuning Pipeline") as demo:
# GPU/driver detection banner
has_gpu, gpu_msg = detect_nvidia_driver()
if has_gpu:
gr.HTML(
f"""
<div style="background-color: rgba(59, 130, 246, 0.1); border: 1px solid rgba(59, 130, 246, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;">
<p style="color: rgb(59, 130, 246); margin: 0; font-size: 14px; font-weight: 600;">
✅ NVIDIA GPU ready — {gpu_msg}
</p>
<p style="color: rgb(59, 130, 246); margin: 6px 0 0; font-size: 12px;">
Reads tokens from environment: <code>HF_WRITE_TOKEN</code> (required), <code>HF_READ_TOKEN</code> (optional)
</p>
<p style="color: rgb(59, 130, 246); margin: 4px 0 0; font-size: 12px;">
Select a config and run training; optionally deploy Trackio and push to Hub
</p>
</div>
"""
)
gr.Markdown(joinus)
else:
hint_html = markdown_links_to_html(duplicate_space_hint())
gr.HTML(
f"""
<div style="background-color: rgba(245, 158, 11, 0.1); border: 1px solid rgba(245, 158, 11, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;">
<p style="color: rgb(234, 88, 12); margin: 0; font-size: 14px; font-weight: 600;">
⚠️ No NVIDIA GPU/driver detected — training requires a GPU runtime
</p>
<p style="color: rgb(234, 88, 12); margin: 6px 0 0; font-size: 12px;">
{hint_html}
</p>
<p style="color: rgb(234, 88, 12); margin: 4px 0 0; font-size: 12px;">
Reads tokens from environment: <code>HF_WRITE_TOKEN</code> (required), <code>HF_READ_TOKEN</code> (optional)
</p>
<p style="color: rgb(234, 88, 12); margin: 4px 0 0; font-size: 12px;">
You can still configure and push, but training requires a GPU runtime.
</p>
</div>
"""
)
gr.Markdown(joinus)
# --- Progressive interface --------------------------------------------------------
gr.Markdown("### Configure your run in simple steps")
# Step 1: Model family
with gr.Group():
model_family = gr.Dropdown(choices=MODEL_FAMILIES, value="SmolLM3", label="1) Model family")
# Step 2: Trainer (revealed after family)
step2_group = gr.Group(visible=False)
with step2_group:
trainer_type = gr.Radio(choices=TRAINER_CHOICES, value="SFT", label="2) Trainer type")
# Step 3: Monitoring (revealed after trainer)
step3_group = gr.Group(visible=False)
with step3_group:
monitoring_mode = gr.Dropdown(choices=MONITORING_CHOICES, value="dataset", label="3) Monitoring mode")
# Step 4: Config & details (revealed after monitoring)
step4_group = gr.Group(visible=False)
with step4_group:
# Defaults based on initial family selection
exp_default, repo_default, desc_default, trackio_space_default = ui_defaults("SmolLM3")
config_choice = gr.Dropdown(
choices=list(get_config_map("SmolLM3").keys()),
value="Basic Training",
label="4) Training configuration",
)
with gr.Tabs():
with gr.Tab("Overview"):
training_info = gr.Markdown("Select a training configuration to see details.")
dataset_choice = gr.Dropdown(
choices=[],
value=None,
allow_custom_value=True,
label="Dataset (from config; optional)",
)
with gr.Row():
experiment_name = gr.Textbox(value=exp_default, label="Experiment name")
repo_short = gr.Textbox(value=repo_default, label="Model repo (short name)")
with gr.Row():
author_name = gr.Textbox(value=os.environ.get("HF_USERNAME", ""), label="Author name")
model_description = gr.Textbox(value=desc_default, label="Model description")
trackio_space_name = gr.Textbox(
value=trackio_space_default,
label="Trackio Space name (used when monitoring != none)",
visible=False,
)
deploy_trackio_space = gr.Checkbox(value=True, label="Deploy Trackio Space", visible=False)
create_dataset_repo = gr.Checkbox(value=True, label="Create/ensure HF Dataset repo", visible=True)
with gr.Row():
push_to_hub = gr.Checkbox(value=True, label="Push model to Hugging Face Hub")
switch_to_read_after = gr.Checkbox(value=True, label="Switch Space token to READ after training")
with gr.Tab("Advanced"):
# GPT-OSS specific scheduler overrides
advanced_scheduler_group = gr.Group(visible=False)
with advanced_scheduler_group:
scheduler_override = gr.Dropdown(
choices=[c for c in SCHEDULER_CHOICES if c is not None],
value=None,
allow_custom_value=True,
label="Scheduler override",
)
with gr.Row():
min_lr = gr.Number(value=None, precision=6, label="min_lr (cosine_with_min_lr)")
min_lr_rate = gr.Number(value=None, precision=6, label="min_lr_rate (cosine_with_min_lr)")
# Final action & logs
start_btn = gr.Button("Run Pipeline", variant="primary")
logs = gr.Textbox(value="", label="Logs", lines=20)
# --- Events ---------------------------------------------------------------------
model_family.change(
on_family_change,
inputs=model_family,
outputs=[
config_choice,
experiment_name,
repo_short,
model_description,
trackio_space_name,
training_info,
dataset_choice,
step2_group,
step3_group,
step4_group,
advanced_scheduler_group,
],
)
trainer_type.change(on_trainer_selected, inputs=trainer_type, outputs=step3_group)
monitoring_mode.change(
on_monitoring_change,
inputs=monitoring_mode,
outputs=[step4_group, trackio_space_name, deploy_trackio_space, create_dataset_repo],
)
config_choice.change(
on_config_change,
inputs=[model_family, config_choice],
outputs=[training_info, dataset_choice],
)
start_btn.click(
start_pipeline,
inputs=[
model_family,
config_choice,
trainer_type,
monitoring_mode,
experiment_name,
repo_short,
author_name,
model_description,
trackio_space_name,
deploy_trackio_space,
create_dataset_repo,
push_to_hub,
switch_to_read_after,
scheduler_override,
min_lr,
min_lr_rate,
],
outputs=[logs],
)
if __name__ == "__main__":
# Optional: allow setting server parameters via env
server_port = int(os.environ.get("INTERFACE_PORT", "7860"))
server_name = os.environ.get("INTERFACE_HOST", "0.0.0.0")
demo.queue().launch(server_name=server_name, server_port=server_port, mcp_server=True)