SmolFactory / launch.sh
Tonic's picture
adds sft , quantization, better readmes
40fd629 verified
raw
history blame
24.3 kB
#!/bin/bash
# Interactive SmolLM3 End-to-End Fine-tuning Pipeline
# This script creates a complete finetuning pipeline with user configuration
set -e # Exit on any error
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
PURPLE='\033[0;35m'
CYAN='\033[0;36m'
NC='\033[0m' # No Color
# Function to print colored output
print_status() {
echo -e "${GREEN}βœ… $1${NC}"
}
print_warning() {
echo -e "${YELLOW}⚠️ $1${NC}"
}
print_error() {
echo -e "${RED}❌ $1${NC}"
}
print_info() {
echo -e "${BLUE}ℹ️ $1${NC}"
}
print_header() {
echo -e "${PURPLE}πŸš€ $1${NC}"
}
print_step() {
echo -e "${CYAN}πŸ“‹ $1${NC}"
}
# Function to get user input with default value
get_input() {
local prompt="$1"
local default="$2"
local var_name="$3"
if [ -n "$default" ]; then
read -p "$prompt [$default]: " input
if [ -z "$input" ]; then
input="$default"
fi
else
read -p "$prompt: " input
while [ -z "$input" ]; do
print_error "This field is required!"
read -p "$prompt: " input
done
fi
eval "$var_name=\"$input\""
}
# Function to select from options
select_option() {
local prompt="$1"
local options=("${@:2}")
local var_name="${!#}"
echo "$prompt"
for i in "${!options[@]}"; do
echo " $((i+1)). ${options[$i]}"
done
while true; do
read -p "Enter your choice (1-${#options[@]}): " choice
if [[ "$choice" =~ ^[0-9]+$ ]] && [ "$choice" -ge 1 ] && [ "$choice" -le "${#options[@]}" ]; then
eval "$var_name=\"${options[$((choice-1))]}\""
break
else
print_error "Invalid choice. Please enter a number between 1 and ${#options[@]}"
fi
done
}
# Function to validate HF token and get username
validate_hf_token_and_get_username() {
local token="$1"
if [ -z "$token" ]; then
return 1
fi
# Test the token and get username
export HF_TOKEN="$token"
if hf whoami >/dev/null 2>&1; then
# Get username from whoami command
HF_USERNAME=$(hf whoami | head -n1 | tr -d '\n')
return 0
else
return 1
fi
}
# Function to show training configurations
show_training_configs() {
echo ""
print_header "Available Training Configurations"
echo "======================================"
echo ""
echo "1. Basic Training (Default)"
echo " - Model: SmolLM3-3B"
echo " - Dataset: SmolTalk"
echo " - Epochs: 3"
echo " - Batch Size: 2"
echo " - Learning Rate: 5e-6"
echo ""
echo "2. H100 Lightweight (Rapid)"
echo " - Model: SmolLM3-3B"
echo " - Dataset: OpenHermes-FR (80K samples)"
echo " - Epochs: 1"
echo " - Batch Size: 16"
echo " - Learning Rate: 8e-6"
echo " - Sequence Length: 8192"
echo " - Optimized for H100 rapid training"
echo ""
echo "3. A100 Large Scale"
echo " - Model: SmolLM3-3B"
echo " - Dataset: OpenHermes-FR"
echo " - Epochs: 1.3 passes"
echo " - Batch Size: 8"
echo " - Learning Rate: 5e-6"
echo " - Sequence Length: 8192"
echo ""
echo "4. Multiple Passes"
echo " - Model: SmolLM3-3B"
echo " - Dataset: OpenHermes-FR"
echo " - Epochs: 4 passes"
echo " - Batch Size: 6"
echo " - Learning Rate: 3e-6"
echo " - Sequence Length: 8192"
echo ""
echo "5. Custom Configuration"
echo " - User-defined parameters"
echo ""
}
# Function to get training configuration
get_training_config() {
local config_type="$1"
case "$config_type" in
"Basic Training")
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=3
BATCH_SIZE=2
GRADIENT_ACCUMULATION_STEPS=8
LEARNING_RATE=5e-6
MAX_SEQ_LENGTH=4096
CONFIG_FILE="config/train_smollm3.py"
;;
"H100 Lightweight (Rapid)")
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=1
BATCH_SIZE=16
GRADIENT_ACCUMULATION_STEPS=4
LEARNING_RATE=8e-6
MAX_SEQ_LENGTH=8192
DATASET_SAMPLE_SIZE=80000
CONFIG_FILE="config/train_smollm3_h100_lightweight.py"
;;
"A100 Large Scale")
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=1
BATCH_SIZE=8
GRADIENT_ACCUMULATION_STEPS=16
LEARNING_RATE=5e-6
MAX_SEQ_LENGTH=8192
CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_large.py"
;;
"Multiple Passes")
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=4
BATCH_SIZE=6
GRADIENT_ACCUMULATION_STEPS=20
LEARNING_RATE=3e-6
MAX_SEQ_LENGTH=8192
CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_multiple_passes.py"
;;
"Custom Configuration")
get_custom_config
;;
esac
}
# Function to get custom configuration
get_custom_config() {
print_step "Custom Configuration Setup"
echo "============================="
get_input "Model name" "HuggingFaceTB/SmolLM3-3B" MODEL_NAME
get_input "Dataset name" "HuggingFaceTB/smoltalk" DATASET_NAME
get_input "Number of epochs" "3" MAX_EPOCHS
get_input "Batch size" "2" BATCH_SIZE
get_input "Gradient accumulation steps" "8" GRADIENT_ACCUMULATION_STEPS
get_input "Learning rate" "5e-6" LEARNING_RATE
get_input "Max sequence length" "4096" MAX_SEQ_LENGTH
# Select config file based on dataset
if [[ "$DATASET_NAME" == *"openhermes"* ]]; then
CONFIG_FILE="config/train_smollm3_openhermes_fr.py"
else
CONFIG_FILE="config/train_smollm3.py"
fi
}
# Function to create training configuration file
create_training_config() {
local config_file="$1"
cat > "$config_file" << EOF
"""
SmolLM3 Training Configuration - Generated by launch.sh
Optimized for: $TRAINING_CONFIG_TYPE
"""
from config.train_smollm3 import SmolLM3Config
config = SmolLM3Config(
# Trainer type selection
trainer_type="$TRAINER_TYPE",
# Model configuration
model_name="$MODEL_NAME",
max_seq_length=$MAX_SEQ_LENGTH,
use_flash_attention=True,
use_gradient_checkpointing=True,
# Training configuration
batch_size=$BATCH_SIZE,
gradient_accumulation_steps=$GRADIENT_ACCUMULATION_STEPS,
learning_rate=$LEARNING_RATE,
weight_decay=0.01,
warmup_steps=100,
max_iters=None, # Will be calculated based on epochs
eval_interval=100,
log_interval=10,
save_interval=500,
# Optimizer configuration
optimizer="adamw",
beta1=0.9,
beta2=0.95,
eps=1e-8,
# Scheduler configuration
scheduler="cosine",
min_lr=1e-6,
# Mixed precision
fp16=True,
bf16=False,
# Logging and saving
save_steps=$SAVE_STEPS,
eval_steps=$EVAL_STEPS,
logging_steps=$LOGGING_STEPS,
save_total_limit=3,
# Evaluation
eval_strategy="steps",
metric_for_best_model="eval_loss",
greater_is_better=False,
load_best_model_at_end=True,
# Data configuration
dataset_name="$DATASET_NAME",
dataset_split="train",
input_field="prompt",
target_field="completion",
filter_bad_entries=False,
bad_entry_field="bad_entry",
# Chat template configuration
use_chat_template=True,
chat_template_kwargs={
"enable_thinking": False,
"add_generation_prompt": True,
"no_think_system_message": True
},
# Trackio monitoring configuration
enable_tracking=True,
trackio_url="$TRACKIO_URL",
trackio_token=None,
log_artifacts=True,
log_metrics=True,
log_config=True,
experiment_name="$EXPERIMENT_NAME",
# HF Datasets configuration
dataset_repo="$TRACKIO_DATASET_REPO"
)
EOF
}
# Main script starts here
print_header "SmolLM3 End-to-End Fine-tuning Pipeline"
echo "=============================================="
echo ""
# Step 1: Get user credentials (only token needed now)
print_step "Step 1: User Authentication"
echo "================================"
get_input "Hugging Face token (get from https://huggingface.co/settings/tokens)" "" HF_TOKEN
# Validate HF token and get username automatically
print_info "Validating Hugging Face token and getting username..."
if validate_hf_token_and_get_username "$HF_TOKEN"; then
print_status "HF token validated successfully"
print_info "Username: $HF_USERNAME"
else
print_error "Invalid HF token. Please check your token and try again."
exit 1
fi
# Step 2: Select training configuration
print_step "Step 2: Training Configuration"
echo "=================================="
show_training_configs
select_option "Select training configuration:" "Basic Training" "H100 Lightweight (Rapid)" "A100 Large Scale" "Multiple Passes" "Custom Configuration" TRAINING_CONFIG_TYPE
get_training_config "$TRAINING_CONFIG_TYPE"
# Step 3: Get experiment details
print_step "Step 3: Experiment Details"
echo "=============================="
get_input "Experiment name" "smollm3_finetune_$(date +%Y%m%d_%H%M%S)" EXPERIMENT_NAME
get_input "Model repository name" "$HF_USERNAME/smollm3-finetuned-$(date +%Y%m%d)" REPO_NAME
get_input "Trackio dataset repository" "$HF_USERNAME/trackio-experiments" TRACKIO_DATASET_REPO
# Step 3.5: Select trainer type
print_step "Step 3.5: Trainer Type Selection"
echo "===================================="
echo "Select the type of training to perform:"
echo "1. SFT (Supervised Fine-tuning) - Standard instruction tuning"
echo " - Uses SFTTrainer for instruction following"
echo " - Suitable for most fine-tuning tasks"
echo " - Optimized for instruction datasets"
echo ""
echo "2. DPO (Direct Preference Optimization) - Preference-based training"
echo " - Uses DPOTrainer for preference learning"
echo " - Requires preference datasets (chosen/rejected pairs)"
echo " - Optimizes for human preferences"
echo ""
select_option "Select trainer type:" "SFT" "DPO" TRAINER_TYPE
# Step 4: Training parameters
print_step "Step 4: Training Parameters"
echo "==============================="
echo "Current configuration:"
echo " Model: $MODEL_NAME"
echo " Dataset: $DATASET_NAME"
echo " Trainer Type: $TRAINER_TYPE"
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}"
fi
echo " Epochs: $MAX_EPOCHS"
echo " Batch Size: $BATCH_SIZE"
echo " Gradient Accumulation: $GRADIENT_ACCUMULATION_STEPS"
echo " Learning Rate: $LEARNING_RATE"
echo " Sequence Length: $MAX_SEQ_LENGTH"
get_input "Save steps" "500" SAVE_STEPS
get_input "Evaluation steps" "100" EVAL_STEPS
get_input "Logging steps" "10" LOGGING_STEPS
# Step 5: Trackio Space configuration
print_step "Step 5: Trackio Space Configuration"
echo "======================================"
get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME
TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME"
# Step 6: Confirm configuration
print_step "Step 6: Configuration Summary"
echo "================================="
echo ""
echo "πŸ“‹ Configuration Summary:"
echo "========================"
echo " User: $HF_USERNAME (auto-detected from token)"
echo " Experiment: $EXPERIMENT_NAME"
echo " Model: $MODEL_NAME"
echo " Dataset: $DATASET_NAME"
echo " Training Config: $TRAINING_CONFIG_TYPE"
echo " Trainer Type: $TRAINER_TYPE"
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}"
fi
echo " Epochs: $MAX_EPOCHS"
echo " Batch Size: $BATCH_SIZE"
echo " Learning Rate: $LEARNING_RATE"
echo " Model Repo: $REPO_NAME"
echo " Trackio Space: $TRACKIO_URL"
echo " HF Dataset: $TRACKIO_DATASET_REPO"
echo ""
read -p "Proceed with this configuration? (y/N): " confirm
if [[ ! "$confirm" =~ ^[Yy]$ ]]; then
print_info "Configuration cancelled. Exiting."
exit 0
fi
# Step 7: Environment setup
print_step "Step 7: Environment Setup"
echo "============================"
print_info "Installing system dependencies..."
# Check if we're already root or if sudo is available
if [ "$EUID" -eq 0 ]; then
# Already root, no need for sudo
print_info "Running as root, skipping sudo..."
apt-get update
apt-get install -y git curl wget unzip python3-pip python3-venv
elif command -v sudo >/dev/null 2>&1; then
# sudo is available, use it
print_info "Using sudo for system dependencies..."
sudo apt-get update
sudo apt-get install -y git curl wget unzip python3-pip python3-venv
else
# No sudo available, try without it
print_warning "sudo not available, attempting to install without sudo..."
if command -v apt-get >/dev/null 2>&1; then
apt-get update
apt-get install -y git curl wget unzip python3-pip python3-venv
else
print_warning "apt-get not available, skipping system dependencies..."
print_info "Please ensure git, curl, wget, unzip, python3-pip, and python3-venv are installed"
fi
fi
print_info "Creating Python virtual environment..."
python3 -m venv smollm3_env
source smollm3_env/bin/activate
print_info "Installing PyTorch with CUDA support..."
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
print_info "Installing project dependencies..."
pip install -r requirements/requirements_core.txt
print_info "Installing additional dependencies..."
pip install trl>=0.7.0
pip install peft>=0.4.0
pip install accelerate>=0.20.0
pip install huggingface-hub>=0.16.0
pip install datasets>=2.14.0
pip install requests>=2.31.0
# Step 8: Authentication setup
print_step "Step 8: Authentication Setup"
echo "================================"
export HF_TOKEN="$HF_TOKEN"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
# Login to Hugging Face with token
print_info "Logging in to Hugging Face..."
if hf login --token "$HF_TOKEN" --add-to-git-credential; then
print_status "Successfully logged in to Hugging Face"
print_info "Username: $(hf whoami)"
else
print_error "Failed to login to Hugging Face"
print_error "Please check your token and try again"
exit 1
fi
# Configure git for HF operations
print_step "Step 8.1: Git Configuration"
echo "================================"
print_info "Configuring git for Hugging Face operations..."
# Get user's email for git configuration
get_input "Enter the email you used to register your account at huggingface for git configuration" "" GIT_EMAIL
# Configure git locally (not globally) for this project
git config user.email "$GIT_EMAIL"
git config user.name "$HF_USERNAME"
# Verify git configuration
print_info "Verifying git configuration..."
if git config user.email && git config user.name; then
print_status "Git configured successfully"
print_info " Email: $(git config user.email)"
print_info " Name: $(git config user.name)"
else
print_error "Failed to configure git"
exit 1
fi
# Step 9: Deploy Trackio Space (automated)
print_step "Step 9: Deploying Trackio Space"
echo "==================================="
cd scripts/trackio_tonic
print_info "Deploying Trackio Space ..."
print_info "Space name: $TRACKIO_SPACE_NAME"
print_info "Username will be auto-detected from token"
print_info "Secrets will be set automatically via API"
# Run deployment script with automated features
python deploy_trackio_space.py << EOF
$TRACKIO_SPACE_NAME
$HF_TOKEN
$GIT_EMAIL
EOF
print_status "Trackio Space deployed: $TRACKIO_URL"
# Step 10: Setup HF Dataset (automated)
print_step "Step 10: Setting up HF Dataset"
echo "=================================="
cd ../dataset_tonic
print_info "Setting up HF Dataset with automated features..."
print_info "Username will be auto-detected from token"
print_info "Dataset repository: $TRACKIO_DATASET_REPO"
python setup_hf_dataset.py
# Step 11: Configure Trackio (automated)
print_step "Step 11: Configuring Trackio"
echo "================================="
cd ../trackio_tonic
print_info "Configuring Trackio ..."
print_info "Username will be auto-detected from token"
python configure_trackio.py
# Step 12: Training Configuration
print_step "Step 12: Training Configuration"
echo "==================================="
cd ../..
print_info "Using existing configuration file: $CONFIG_FILE"
# Step 13: Dataset Configuration
print_step "Step 13: Dataset Configuration"
echo "=================================="
print_info "Dataset will be loaded directly by src/data.py during training"
print_info "Dataset: $DATASET_NAME"
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
print_info "Sample size: ${DATASET_SAMPLE_SIZE:-80000} (will be handled by data.py)"
fi
# Step 14: Training Parameters
print_step "Step 14: Training Parameters"
echo "================================"
print_info "Training parameters will be loaded from configuration file"
print_info "Model: $MODEL_NAME"
print_info "Dataset: $DATASET_NAME"
print_info "Batch size: $BATCH_SIZE"
print_info "Learning rate: $LEARNING_RATE"
# Step 15: Start training
print_step "Step 15: Starting Training"
echo "=============================="
print_info "Starting training with configuration: $CONFIG_FILE"
print_info "Experiment: $EXPERIMENT_NAME"
print_info "Output: /output-checkpoint"
print_info "Trackio: $TRACKIO_URL"
# Run the simpler training script
python scripts/training/train.py \
--config "$CONFIG_FILE" \
--experiment-name "$EXPERIMENT_NAME" \
--output-dir /output-checkpoint \
--trackio-url "$TRACKIO_URL" \
--trainer-type "$TRAINER_TYPE"
# Step 16: Push model to Hugging Face Hub
print_step "Step 16: Pushing Model to HF Hub"
echo "====================================="
print_info "Pushing model to: $REPO_NAME"
print_info "Checkpoint: /output-checkpoint"
# Run the push script
python scripts/model_tonic/push_to_huggingface.py /output-checkpoint "$REPO_NAME" \
--token "$HF_TOKEN" \
--trackio-url "$TRACKIO_URL" \
--experiment-name "$EXPERIMENT_NAME" \
--dataset-repo "$TRACKIO_DATASET_REPO"
# Step 16.5: Quantization Options
print_step "Step 16.5: Model Quantization Options"
echo "=========================================="
print_info "Would you like to create quantized versions of your model?"
print_info "Quantization reduces model size and improves inference speed."
# Ask about quantization
get_input "Create quantized models? (y/n)" "y" "CREATE_QUANTIZED"
if [ "$CREATE_QUANTIZED" = "y" ] || [ "$CREATE_QUANTIZED" = "Y" ]; then
print_info "Quantization options:"
print_info "1. int8_weight_only (GPU optimized, ~50% memory reduction)"
print_info "2. int4_weight_only (CPU optimized, ~75% memory reduction)"
print_info "3. Both int8 and int4 versions"
select_option "Select quantization type:" "int8_weight_only" "int4_weight_only" "both" "QUANT_TYPE"
if [ "$QUANT_TYPE" = "both" ]; then
# Create both int8 and int4 versions in the same repository
print_info "Creating int8 (GPU) quantized model..."
python scripts/model_tonic/quantize_model.py /output-checkpoint "$REPO_NAME" \
--quant-type "int8_weight_only" \
--device "auto" \
--token "$HF_TOKEN" \
--trackio-url "$TRACKIO_URL" \
--experiment-name "${EXPERIMENT_NAME}-int8" \
--dataset-repo "$TRACKIO_DATASET_REPO"
print_info "Creating int4 (CPU) quantized model..."
python scripts/model_tonic/quantize_model.py /output-checkpoint "$REPO_NAME" \
--quant-type "int4_weight_only" \
--device "cpu" \
--token "$HF_TOKEN" \
--trackio-url "$TRACKIO_URL" \
--experiment-name "${EXPERIMENT_NAME}-int4" \
--dataset-repo "$TRACKIO_DATASET_REPO"
print_status "βœ… Both quantized models created in the same repository:"
print_info "Main model: https://huggingface.co/$REPO_NAME"
print_info "int8 (GPU): https://huggingface.co/$REPO_NAME/int8"
print_info "int4 (CPU): https://huggingface.co/$REPO_NAME/int4"
else
# Create single quantized version in the same repository
print_info "Creating ${QUANT_TYPE} quantized model..."
DEVICE="auto"
if [ "$QUANT_TYPE" = "int4_weight_only" ]; then
DEVICE="cpu"
fi
python scripts/model_tonic/quantize_model.py /output-checkpoint "$REPO_NAME" \
--quant-type "$QUANT_TYPE" \
--device "$DEVICE" \
--token "$HF_TOKEN" \
--trackio-url "$TRACKIO_URL" \
--experiment-name "${EXPERIMENT_NAME}-${QUANT_TYPE}" \
--dataset-repo "$TRACKIO_DATASET_REPO"
print_status "βœ… Quantized model created: https://huggingface.co/$REPO_NAME/${QUANT_TYPE//_/-}"
fi
else
print_info "Skipping quantization"
fi
# Step 17: Create summary report
print_step "Step 17: Creating Summary Report"
echo "===================================="
cat > training_summary.md << EOF
# SmolLM3 Fine-tuning Summary
## Configuration
- **Model**: $MODEL_NAME
- **Dataset**: $DATASET_NAME
- **Experiment**: $EXPERIMENT_NAME
- **Repository**: $REPO_NAME
- **Trackio Space**: $TRACKIO_URL
- **HF Dataset**: $TRACKIO_DATASET_REPO
- **Training Config**: $TRAINING_CONFIG_TYPE
- **Trainer Type**: $TRAINER_TYPE
$(if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
echo "- **Dataset Sample Size**: ${DATASET_SAMPLE_SIZE:-80000}"
fi)
## Training Parameters
- **Batch Size**: $BATCH_SIZE
- **Gradient Accumulation**: $GRADIENT_ACCUMULATION_STEPS
- **Learning Rate**: $LEARNING_RATE
- **Max Epochs**: $MAX_EPOCHS
- **Sequence Length**: $MAX_SEQ_LENGTH
## Results
- **Model Repository**: https://huggingface.co/$REPO_NAME
- **Trackio Monitoring**: $TRACKIO_URL
- **Experiment Data**: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO
$(if [ "$CREATE_QUANTIZED" = "y" ] || [ "$CREATE_QUANTIZED" = "Y" ]; then
echo "- **Quantization**: $QUANT_TYPE"
if [ "$QUANT_TYPE" = "both" ]; then
echo "- **int8 Model (GPU)**: https://huggingface.co/$REPO_NAME/int8"
echo "- **int4 Model (CPU)**: https://huggingface.co/$REPO_NAME/int4"
else
echo "- **Quantized Model**: https://huggingface.co/$REPO_NAME/${QUANT_TYPE//_/-}"
fi
fi)
## Next Steps
1. Monitor training progress in your Trackio Space
2. Check the model repository on Hugging Face Hub
3. Use the model in your applications
4. Share your results with the community
## Files Created
- Training configuration: \`$CONFIG_FILE\`
- Model checkpoint: \`/output-checkpoint/\`
- Training logs: \`training.log\`
- Summary report: \`training_summary.md\`
EOF
print_status "Summary report saved to: training_summary.md"
# Final summary
echo ""
print_header "πŸŽ‰ End-to-End Pipeline Completed Successfully!"
echo "=================================================="
echo ""
echo "πŸ“Š Model: https://huggingface.co/$REPO_NAME"
echo "πŸ“ˆ Trackio: $TRACKIO_URL"
echo "πŸ“‹ Experiment: $EXPERIMENT_NAME"
echo "πŸ“Š Dataset: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO"
$(if [ "$CREATE_QUANTIZED" = "y" ] || [ "$CREATE_QUANTIZED" = "Y" ]; then
echo ""
echo "πŸ”§ Quantized Models:"
if [ "$QUANT_TYPE" = "both" ]; then
echo " πŸ“Š int8 (GPU): https://huggingface.co/$REPO_NAME/int8"
echo " πŸ“Š int4 (CPU): https://huggingface.co/$REPO_NAME/int4"
else
echo " πŸ“Š $QUANT_TYPE: https://huggingface.co/$REPO_NAME/${QUANT_TYPE//_/-}"
fi
fi)
echo ""
echo "πŸ“‹ Summary report saved to: training_summary.md"
echo ""
echo "πŸš€ Next steps:"
echo "1. Monitor training progress in your Trackio Space"
echo "2. Check the model repository on Hugging Face Hub"
echo "3. Use the model in your applications"
echo "4. Share your results with the community"
echo ""
print_status "Pipeline completed successfully!"