Spaces:
Running
Running
# Cloud Deployment Script for SmolLM3 DPO Training | |
# This script sets up a cloud instance for training and uploading to Hugging Face | |
set -e # Exit on any error | |
echo "π Starting SmolLM3 DPO Cloud Deployment" | |
echo "==========================================" | |
# Configuration | |
MODEL_NAME="HuggingFaceTB/SmolLM3-3B" | |
DATASET_NAME="HuggingFaceTB/smoltalk" | |
EXPERIMENT_NAME="smollm3_dpo_6epochs" | |
REPO_NAME="your-username/smollm3-dpo-6epochs" # Change this to your username | |
TRACKIO_URL="https://your-trackio-space.hf.space" # Change this to your Trackio Space URL | |
HF_TOKEN="your_hf_token_here" # Change this to your HF token | |
# Training Configuration | |
BATCH_SIZE=2 | |
GRADIENT_ACCUMULATION_STEPS=8 | |
LEARNING_RATE=5e-6 | |
MAX_EPOCHS=6 | |
MAX_SEQ_LENGTH=4096 | |
SAVE_STEPS=500 | |
EVAL_STEPS=100 | |
LOGGING_STEPS=10 | |
echo "π Configuration:" | |
echo " Model: $MODEL_NAME" | |
echo " Dataset: $DATASET_NAME" | |
echo " Experiment: $EXPERIMENT_NAME" | |
echo " Repository: $REPO_NAME" | |
echo " Epochs: $MAX_EPOCHS" | |
echo " Batch Size: $BATCH_SIZE" | |
echo " Learning Rate: $LEARNING_RATE" | |
# Step 1: Update system and install dependencies | |
echo "" | |
echo "π§ Step 1: Installing system dependencies..." | |
sudo apt-get update | |
sudo apt-get install -y git curl wget unzip | |
# Step 2: Install Python and pip | |
echo "" | |
echo "π Step 2: Installing Python dependencies..." | |
sudo apt-get install -y python3 python3-pip python3-venv | |
# Step 3: Create virtual environment | |
echo "" | |
echo "π¦ Step 3: Setting up Python virtual environment..." | |
python3 -m venv smollm3_env | |
source smollm3_env/bin/activate | |
# Step 4: Install PyTorch and CUDA | |
echo "" | |
echo "π₯ Step 4: Installing PyTorch with CUDA support..." | |
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 | |
# Step 5: Install project dependencies | |
echo "" | |
echo "π Step 5: Installing project dependencies..." | |
pip install -r requirements.txt | |
# Step 6: Install additional dependencies for DPO | |
echo "" | |
echo "π― Step 6: Installing DPO-specific dependencies..." | |
pip install trl>=0.7.0 | |
pip install peft>=0.4.0 | |
pip install accelerate>=0.20.0 | |
# Step 7: Set up Hugging Face token | |
echo "" | |
echo "π Step 7: Setting up Hugging Face authentication..." | |
export HF_TOKEN="$HF_TOKEN" | |
huggingface-cli login --token $HF_TOKEN | |
# Step 8: Create DPO configuration | |
echo "" | |
echo "βοΈ Step 8: Creating DPO configuration..." | |
cat > config/train_smollm3_dpo_6epochs.py << EOF | |
""" | |
SmolLM3 DPO Training Configuration - 6 Epochs | |
Optimized for cloud deployment | |
""" | |
from config.train_smollm3_dpo import SmolLM3DPOConfig | |
config = SmolLM3DPOConfig( | |
# Model configuration | |
model_name="$MODEL_NAME", | |
max_seq_length=$MAX_SEQ_LENGTH, | |
use_flash_attention=True, | |
use_gradient_checkpointing=True, | |
# Training configuration | |
batch_size=$BATCH_SIZE, | |
gradient_accumulation_steps=$GRADIENT_ACCUMULATION_STEPS, | |
learning_rate=$LEARNING_RATE, | |
weight_decay=0.01, | |
warmup_steps=100, | |
max_iters=None, # Will be calculated based on epochs | |
eval_interval=100, | |
log_interval=10, | |
save_interval=500, | |
# DPO configuration | |
beta=0.1, | |
max_prompt_length=$((MAX_SEQ_LENGTH // 2)), | |
# Optimizer configuration | |
optimizer="adamw", | |
beta1=0.9, | |
beta2=0.95, | |
eps=1e-8, | |
# Scheduler configuration | |
scheduler="cosine", | |
min_lr=1e-6, | |
# Mixed precision | |
fp16=True, | |
bf16=False, | |
# Logging and saving | |
save_steps=$SAVE_STEPS, | |
eval_steps=$EVAL_STEPS, | |
logging_steps=$LOGGING_STEPS, | |
save_total_limit=3, | |
# Evaluation | |
eval_strategy="steps", | |
metric_for_best_model="eval_loss", | |
greater_is_better=False, | |
load_best_model_at_end=True, | |
# Data configuration | |
data_dir="smoltalk_dataset", | |
train_file="train.json", | |
validation_file="validation.json", | |
# Chat template configuration | |
use_chat_template=True, | |
chat_template_kwargs={ | |
"enable_thinking": False, | |
"add_generation_prompt": True | |
}, | |
# Trackio monitoring configuration | |
enable_tracking=True, | |
trackio_url="$TRACKIO_URL", | |
trackio_token=None, | |
log_artifacts=True, | |
log_metrics=True, | |
log_config=True, | |
experiment_name="$EXPERIMENT_NAME" | |
) | |
EOF | |
# Step 9: Download and prepare dataset | |
echo "" | |
echo "π Step 9: Downloading and preparing dataset..." | |
python -c " | |
from datasets import load_dataset | |
import json | |
import os | |
# Load SmolTalk dataset | |
print('Loading SmolTalk dataset...') | |
dataset = load_dataset('$DATASET_NAME') | |
# Create dataset directory | |
os.makedirs('smoltalk_dataset', exist_ok=True) | |
# Convert to DPO format (preference pairs) | |
def convert_to_dpo_format(example): | |
# For SmolTalk, we'll create preference pairs based on response quality | |
# This is a simplified example - you may need to adjust based on your needs | |
return { | |
'prompt': example.get('prompt', ''), | |
'chosen': example.get('chosen', ''), | |
'rejected': example.get('rejected', '') | |
} | |
# Process train split | |
train_data = [] | |
for example in dataset['train']: | |
dpo_example = convert_to_dpo_format(example) | |
if dpo_example['prompt'] and dpo_example['chosen'] and dpo_example['rejected']: | |
train_data.append(dpo_example) | |
# Process validation split | |
val_data = [] | |
for example in dataset['validation']: | |
dpo_example = convert_to_dpo_format(example) | |
if dpo_example['prompt'] and dpo_example['chosen'] and dpo_example['rejected']: | |
val_data.append(dpo_example) | |
# Save to files | |
with open('smoltalk_dataset/train.json', 'w') as f: | |
json.dump(train_data, f, indent=2) | |
with open('smoltalk_dataset/validation.json', 'w') as f: | |
json.dump(val_data, f, indent=2) | |
print(f'Dataset prepared: {len(train_data)} train samples, {len(val_data)} validation samples') | |
" | |
# Step 10: Calculate training steps based on epochs | |
echo "" | |
echo "π Step 10: Calculating training parameters..." | |
TOTAL_SAMPLES=$(python -c "import json; data=json.load(open('smoltalk_dataset/train.json')); print(len(data))") | |
EFFECTIVE_BATCH_SIZE=$((BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS)) | |
STEPS_PER_EPOCH=$((TOTAL_SAMPLES / EFFECTIVE_BATCH_SIZE)) | |
MAX_STEPS=$((STEPS_PER_EPOCH * MAX_EPOCHS)) | |
echo " Total samples: $TOTAL_SAMPLES" | |
echo " Effective batch size: $EFFECTIVE_BATCH_SIZE" | |
echo " Steps per epoch: $STEPS_PER_EPOCH" | |
echo " Total training steps: $MAX_STEPS" | |
# Step 11: Start DPO training | |
echo "" | |
echo "π― Step 11: Starting DPO training..." | |
python train.py config/train_smollm3_dpo_6epochs.py \ | |
--dataset_dir smoltalk_dataset \ | |
--out_dir /output-checkpoint \ | |
--init_from scratch \ | |
--max_iters $MAX_STEPS \ | |
--batch_size $BATCH_SIZE \ | |
--learning_rate $LEARNING_RATE \ | |
--gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \ | |
--max_seq_length $MAX_SEQ_LENGTH \ | |
--save_steps $SAVE_STEPS \ | |
--eval_steps $EVAL_STEPS \ | |
--logging_steps $LOGGING_STEPS \ | |
--enable_tracking \ | |
--trackio_url "$TRACKIO_URL" \ | |
--experiment_name "$EXPERIMENT_NAME" | |
# Step 12: Push model to Hugging Face Hub | |
echo "" | |
echo "π€ Step 12: Pushing model to Hugging Face Hub..." | |
python push_to_huggingface.py /output-checkpoint "$REPO_NAME" \ | |
--token "$HF_TOKEN" \ | |
--trackio-url "$TRACKIO_URL" \ | |
--experiment-name "$EXPERIMENT_NAME" | |
# Step 13: Test the uploaded model | |
echo "" | |
echo "π§ͺ Step 13: Testing uploaded model..." | |
python -c " | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
print('Loading uploaded model...') | |
model = AutoModelForCausalLM.from_pretrained('$REPO_NAME', torch_dtype=torch.float16, device_map='auto') | |
tokenizer = AutoTokenizer.from_pretrained('$REPO_NAME') | |
print('Testing model generation...') | |
prompt = 'Hello, how are you?' | |
inputs = tokenizer(prompt, return_tensors='pt').to(model.device) | |
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, temperature=0.7) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
print(f'Prompt: {prompt}') | |
print(f'Response: {response}') | |
print('β Model test completed successfully!') | |
" | |
echo "" | |
echo "π Deployment completed successfully!" | |
echo "=====================================" | |
echo "π Model: https://huggingface.co/$REPO_NAME" | |
echo "π Trackio: $TRACKIO_URL" | |
echo "π Experiment: $EXPERIMENT_NAME" | |
echo "" | |
echo "Next steps:" | |
echo "1. Monitor training progress in your Trackio Space" | |
echo "2. Check the model repository on Hugging Face Hub" | |
echo "3. Use the model in your applications" |