Spaces:
Running
Running
| """ | |
| GPT-OSS H100 Optimized Training Configuration | |
| Based on OpenAI's GPT-OSS fine-tuning tutorial | |
| Optimized for H100 GPU with maximum performance | |
| """ | |
| import os | |
| from dataclasses import dataclass | |
| from typing import Optional | |
| class GPTOSSH100OptimizedConfig: | |
| """H100-optimized configuration for GPT-OSS fine-tuning""" | |
| # Trainer type selection | |
| trainer_type: str = "sft" # "sft" or "dpo" | |
| # Model configuration - GPT-OSS specific with H100 optimizations | |
| model_name: str = "openai/gpt-oss-20b" | |
| max_seq_length: int = 4096 # Increased for H100 | |
| use_flash_attention: bool = True | |
| use_gradient_checkpointing: bool = True | |
| # Training configuration - H100 optimized | |
| batch_size: int = 8 # Larger batch size for H100 | |
| gradient_accumulation_steps: int = 2 # Reduced for faster updates | |
| learning_rate: float = 3e-4 # Higher LR for H100 | |
| weight_decay: float = 0.01 | |
| warmup_steps: int = 50 # Reduced warmup for rapid training | |
| max_iters: int = 2000 # More iterations for H100 | |
| eval_interval: int = 50 # More frequent evaluation | |
| log_interval: int = 5 # More frequent logging | |
| save_interval: int = 200 # More frequent saving | |
| # Optimizer configuration - H100 optimized | |
| optimizer: str = "adamw_torch" | |
| beta1: float = 0.9 | |
| beta2: float = 0.95 | |
| eps: float = 1e-8 | |
| # Scheduler configuration - faster learning | |
| scheduler: str = "cosine_with_min_lr" | |
| min_lr: float = 3e-5 # Higher min LR for H100 | |
| lr_scheduler_kwargs: dict = None | |
| # Mixed precision - H100 optimized | |
| fp16: bool = False # Use bf16 for H100 | |
| bf16: bool = True | |
| # DDP configuration | |
| ddp_backend: str = "nccl" | |
| ddp_find_unused_parameters: bool = False | |
| # Logging and saving - optimized for rapid training | |
| save_steps: int = 200 | |
| eval_steps: int = 50 | |
| logging_steps: int = 5 | |
| save_total_limit: Optional[int] = 2 # Keep fewer checkpoints | |
| # Evaluation | |
| eval_strategy: str = "steps" | |
| metric_for_best_model: str = "eval_loss" | |
| greater_is_better: bool = False | |
| load_best_model_at_end: bool = True | |
| eval_accumulation_steps: Optional[int] = None | |
| eval_ratio: float = 0.01 | |
| test_ratio: float = 0.01 | |
| # Data configuration | |
| dataset_name: str = "HuggingFaceH4/Multilingual-Thinking" | |
| dataset_split: str = "train" | |
| input_field: str = "messages" # GPT-OSS uses messages format | |
| target_field: str = None # Not used for messages format | |
| filter_bad_entries: bool = False | |
| bad_entry_field: str = "bad_entry" | |
| # Chat template configuration - GPT-OSS specific | |
| use_chat_template: bool = True | |
| chat_template_kwargs: dict = None | |
| # Trackio monitoring configuration | |
| enable_tracking: bool = True | |
| trackio_url: Optional[str] = None | |
| trackio_token: Optional[str] = None | |
| log_artifacts: bool = True | |
| log_metrics: bool = True | |
| log_config: bool = True | |
| experiment_name: Optional[str] = None | |
| # HF Datasets configuration | |
| hf_token: Optional[str] = None | |
| dataset_repo: Optional[str] = None | |
| # GPT-OSS specific configurations | |
| # LoRA configuration for GPT-OSS - H100 optimized | |
| use_lora: bool = True | |
| lora_config: dict = None | |
| # Quantization for GPT-OSS (MXFP4) - H100 optimized | |
| use_quantization: bool = True | |
| quantization_config: dict = None | |
| # GPT-OSS specific model kwargs - H100 optimized | |
| model_kwargs: dict = None | |
| # H100-specific optimizations | |
| dataloader_num_workers: int = 8 # More workers for H100 | |
| dataloader_pin_memory: bool = True | |
| dataloader_prefetch_factor: int = 4 # Increased prefetch | |
| tf32: Optional[bool] = None | |
| chosen_field: Optional[str] = None | |
| rejected_field: Optional[str] = None | |
| dpo_beta: float = 0.1 | |
| # Memory optimizations for H100 | |
| max_grad_norm: float = 1.0 | |
| group_by_length: bool = True # Group similar length sequences | |
| def __post_init__(self): | |
| if self.chat_template_kwargs is None: | |
| self.chat_template_kwargs = { | |
| "add_generation_prompt": True, | |
| "tokenize": False # GPT-OSS specific | |
| } | |
| if self.lr_scheduler_kwargs is None: | |
| self.lr_scheduler_kwargs = { | |
| "min_lr_rate": 0.1 | |
| } | |
| if self.lora_config is None: | |
| self.lora_config = { | |
| "r": 16, # Increased for H100 | |
| "lora_alpha": 32, # Increased for H100 | |
| "target_modules": "all-linear", | |
| "target_parameters": [ | |
| "7.mlp.experts.gate_up_proj", | |
| "7.mlp.experts.down_proj", | |
| "15.mlp.experts.gate_up_proj", | |
| "15.mlp.experts.down_proj", | |
| "23.mlp.experts.gate_up_proj", | |
| "23.mlp.experts.down_proj", | |
| ] | |
| } | |
| if self.quantization_config is None: | |
| self.quantization_config = { | |
| "dequantize": True | |
| } | |
| if self.model_kwargs is None: | |
| self.model_kwargs = { | |
| "attn_implementation": "eager", | |
| "torch_dtype": "auto", | |
| "use_cache": False, | |
| "device_map": "auto" | |
| } | |
| # Validate configuration | |
| if self.fp16 and self.bf16: | |
| raise ValueError("Cannot use both fp16 and bf16") | |
| if self.max_seq_length > 131072: # 128k limit | |
| raise ValueError("max_seq_length cannot exceed 131072") | |
| # Calculate training statistics for H100 | |
| effective_batch_size = self.batch_size * self.gradient_accumulation_steps | |
| steps_per_epoch = 1000 // effective_batch_size # Approximate for Multilingual-Thinking | |
| epochs_for_max_iters = self.max_iters / steps_per_epoch | |
| print(f"=== GPT-OSS H100 Optimized Configuration ===") | |
| print(f"Effective batch size: {effective_batch_size}") | |
| print(f"Steps per epoch: ~{steps_per_epoch}") | |
| print(f"Training for ~{epochs_for_max_iters:.1f} epochs") | |
| print(f"Total training steps: {self.max_iters}") | |
| print(f"Learning rate: {self.learning_rate}") | |
| print(f"Mixed precision: {'bf16' if self.bf16 else 'fp16'}") | |
| print(f"Max sequence length: {self.max_seq_length}") | |
| print(f"Gradient checkpointing: {self.use_gradient_checkpointing}") | |
| print(f"LoRA rank: {self.lora_config['r']}") | |
| print(f"Data loader workers: {self.dataloader_num_workers}") | |
| print("=" * 50) | |
| # Set default experiment name if not provided | |
| if self.experiment_name is None: | |
| self.experiment_name = "gpt_oss_h100_optimized" | |
| def get_config(config_path: str) -> GPTOSSH100OptimizedConfig: | |
| """Load configuration from file or return default""" | |
| if os.path.exists(config_path): | |
| # Load from file if it exists | |
| import importlib.util | |
| spec = importlib.util.spec_from_file_location("config_module", config_path) | |
| config_module = importlib.util.module_from_spec(spec) | |
| spec.loader.exec_module(config_module) | |
| if hasattr(config_module, 'config'): | |
| return config_module.config | |
| else: | |
| # Try to find a config class | |
| for attr_name in dir(config_module): | |
| attr = getattr(config_module, attr_name) | |
| if isinstance(attr, GPTOSSH100OptimizedConfig): | |
| return attr | |
| # Return default configuration | |
| return GPTOSSH100OptimizedConfig() | |
| # Default configuration instance | |
| config = GPTOSSH100OptimizedConfig() |