Spaces:
Running
Running
File size: 7,239 Bytes
ebe598e 40fd629 ebe598e 40fd629 ebe598e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# SmolLM3 End-to-End Fine-tuning Pipeline
This repository provides a complete end-to-end pipeline for fine-tuning SmolLM3 models with integrated experiment tracking, monitoring, and model deployment.
## π Quick Start
### 1. Setup Configuration
```bash
# Run the setup script to configure with your information
python setup_launch.py
```
### 2. Check Requirements
```bash
# Verify all dependencies are installed
python check_requirements.py
```
### 3. Run the Pipeline
```bash
# Make the script executable and run
chmod +x launch.sh
./launch.sh
```
This will prompt you for:
- Your Hugging Face token
- Optional model and dataset customizations
## π What the Pipeline Does
The end-to-end pipeline performs the following steps:
### 1. **Environment Setup**
- Installs system dependencies
- Creates Python virtual environment
- Installs PyTorch with CUDA support
- Installs all required Python packages
### 2. **Trackio Space Deployment**
- Creates a new Hugging Face Space for experiment tracking
- Configures the Trackio monitoring interface
- Sets up environment variables
### 3. **HF Dataset Setup**
- Creates a Hugging Face Dataset repository for experiment storage
- Configures dataset access and permissions
- Sets up initial experiment data structure
### 4. **Dataset Preparation**
- Downloads the specified dataset from Hugging Face Hub
- Converts to training format (prompt/completion pairs)
- Handles multiple dataset formats automatically
- Creates train/validation splits
### 5. **Training Configuration**
- Creates optimized training configuration
- Sets up monitoring integration
- Configures model parameters and hyperparameters
### 6. **Model Training**
- Runs the SmolLM3 fine-tuning process
- Logs metrics to Trackio Space in real-time
- Saves experiment data to HF Dataset
- Creates checkpoints during training
### 7. **Model Deployment**
- Pushes trained model to Hugging Face Hub
- Creates comprehensive model card
- Uploads training results and logs
- Tests the uploaded model
### 8. **Summary Report**
- Generates detailed training summary
- Provides links to all resources
- Documents configuration and results
## π― Features
### **Integrated Monitoring**
- Real-time experiment tracking via Trackio Space
- Persistent storage in Hugging Face Datasets
- Comprehensive metrics logging
- System resource monitoring
### **Flexible Dataset Support**
- Automatic format detection and conversion
- Support for multiple dataset types
- Built-in data preprocessing
- Train/validation split handling
### **Optimized Training**
- Flash Attention support for efficiency
- Gradient checkpointing for memory optimization
- Mixed precision training
- Automatic hyperparameter optimization
### **Complete Deployment**
- Automated model upload to Hugging Face Hub
- Comprehensive model cards
- Training results documentation
- Model testing and validation
## π Monitoring & Tracking
### **Trackio Space Interface**
- Real-time training metrics visualization
- Experiment management and comparison
- System resource monitoring
- Training progress tracking
### **HF Dataset Storage**
- Persistent experiment data storage
- Version-controlled experiment history
- Collaborative experiment sharing
- Automated data backup
## π§ Configuration
### **Required Configuration**
Update these variables in `launch.sh`:
```bash
# Your Hugging Face credentials
HF_TOKEN="your_hf_token_here"
HF_USERNAME="your-username"
# Model and dataset
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="HuggingFaceTB/smoltalk"
# Output repositories
REPO_NAME="your-username/smollm3-finetuned-$(date +%Y%m%d)"
TRACKIO_DATASET_REPO="your-username/trackio-experiments"
```
### **Training Parameters**
Customize training parameters:
```bash
# Training configuration
BATCH_SIZE=2
GRADIENT_ACCUMULATION_STEPS=8
LEARNING_RATE=5e-6
MAX_EPOCHS=3
MAX_SEQ_LENGTH=4096
```
## π Output Structure
After running the pipeline, you'll have:
```
βββ training_dataset/ # Prepared dataset
β βββ train.json
β βββ validation.json
βββ /output-checkpoint/ # Model checkpoints
β βββ config.json
β βββ pytorch_model.bin
β βββ training_results/
βββ training.log # Training logs
βββ training_summary.md # Summary report
βββ config/train_smollm3_end_to_end.py # Training config
```
## π Online Resources
The pipeline creates these online resources:
- **Model Repository**: `https://huggingface.co/your-username/smollm3-finetuned-YYYYMMDD`
- **Trackio Space**: `https://huggingface.co/spaces/your-username/trackio-monitoring-YYYYMMDD`
- **Experiment Dataset**: `https://huggingface.co/datasets/your-username/trackio-experiments`
## π οΈ Troubleshooting
### **Common Issues**
1. **HF Token Issues**
```bash
# Verify your token is correct
hf whoami
```
2. **CUDA Issues**
```bash
# Check CUDA availability
python -c "import torch; print(torch.cuda.is_available())"
```
3. **Memory Issues**
```bash
# Reduce batch size or gradient accumulation
BATCH_SIZE=1
GRADIENT_ACCUMULATION_STEPS=16
```
4. **Dataset Issues**
```bash
# Test dataset access
python -c "from datasets import load_dataset; print(load_dataset('your-dataset'))"
```
### **Debug Mode**
Run individual components for debugging:
```bash
# Test Trackio deployment
cd scripts/trackio_tonic
python deploy_trackio_space.py
# Test dataset setup
cd scripts/dataset_tonic
python setup_hf_dataset.py
# Test training
python src/train.py config/train_smollm3_end_to_end.py --help
```
## π Advanced Usage
### **Custom Datasets**
For custom datasets, ensure they have one of these formats:
```json
// Format 1: Prompt/Completion
{
"prompt": "What is machine learning?",
"completion": "Machine learning is..."
}
// Format 2: Instruction/Output
{
"instruction": "Explain machine learning",
"output": "Machine learning is..."
}
// Format 3: Chat format
{
"messages": [
{"role": "user", "content": "What is ML?"},
{"role": "assistant", "content": "ML is..."}
]
}
```
### **Custom Models**
To use different models, update the configuration:
```bash
MODEL_NAME="microsoft/DialoGPT-medium"
MAX_SEQ_LENGTH=1024
```
### **Custom Training**
Modify training parameters in the generated config:
```python
# In config/train_smollm3_end_to_end.py
config = SmolLM3Config(
learning_rate=1e-5, # Custom learning rate
max_iters=5000, # Custom training steps
# ... other parameters
)
```
## π€ Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Test the pipeline
5. Submit a pull request
## π License
This project is licensed under the MIT License - see the LICENSE file for details.
## π Acknowledgments
- Hugging Face for the excellent transformers library
- The SmolLM3 team for the base model
- The Trackio team for experiment tracking
- The open-source community for contributions
## π Support
For issues and questions:
1. Check the troubleshooting section
2. Review the logs in `training.log`
3. Check the Trackio Space for monitoring data
4. Open an issue on GitHub
---
**Happy Fine-tuning! π** |