File size: 9,641 Bytes
40fd629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Model Quantization Guide

## Overview

This guide covers the quantization functionality integrated into the SmolLM3 fine-tuning pipeline. The system supports creating quantized versions of trained models using `torchao` and automatically uploading them to Hugging Face Hub in a unified repository structure.

## Repository Structure

With the updated pipeline, all models (main and quantized) are stored in a single repository:

```
your-username/model-name/
β”œβ”€β”€ README.md (unified model card)
β”œβ”€β”€ config.json
β”œβ”€β”€ pytorch_model.bin
β”œβ”€β”€ tokenizer.json
β”œβ”€β”€ tokenizer_config.json
β”œβ”€β”€ int8/ (quantized model for GPU)
β”‚   β”œβ”€β”€ README.md
β”‚   β”œβ”€β”€ config.json
β”‚   └── pytorch_model.bin
└── int4/ (quantized model for CPU)
    β”œβ”€β”€ README.md
    β”œβ”€β”€ config.json
    └── pytorch_model.bin
```

## Quantization Types

### int8 Weight-Only Quantization (GPU Optimized)
- **Memory Reduction**: ~50% compared to original model
- **Speed**: Faster inference with minimal accuracy loss
- **Hardware**: GPU optimized for high-performance inference
- **Use Case**: Production deployments with GPU resources

### int4 Weight-Only Quantization (CPU Optimized)
- **Memory Reduction**: ~75% compared to original model
- **Speed**: Significantly faster inference with some accuracy trade-off
- **Hardware**: CPU optimized for deployment
- **Use Case**: Edge deployment, CPU-only environments

## Integration with Pipeline

### Automatic Quantization

The quantization process is integrated into the main training pipeline:

1. **Training**: Model is trained using the standard pipeline
2. **Model Push**: Main model is pushed to Hugging Face Hub
3. **Quantization Options**: User is prompted to create quantized versions
4. **Quantized Models**: Quantized models are created and pushed to subdirectories
5. **Unified Documentation**: Single model card covers all versions

### Pipeline Integration

The quantization step is added to `launch.sh` after the main model push:

```bash
# Step 16.5: Quantization Options
print_step "Step 16.5: Model Quantization Options"
echo "=========================================="

print_info "Would you like to create quantized versions of your model?"
print_info "Quantization reduces model size and improves inference speed."

# Ask about quantization
get_input "Create quantized models? (y/n)" "y" "CREATE_QUANTIZED"

if [ "$CREATE_QUANTIZED" = "y" ] || [ "$CREATE_QUANTIZED" = "Y" ]; then
    print_info "Quantization options:"
    print_info "1. int8_weight_only (GPU optimized, ~50% memory reduction)"
    print_info "2. int4_weight_only (CPU optimized, ~75% memory reduction)"
    print_info "3. Both int8 and int4 versions"
    
    select_option "Select quantization type:" "int8_weight_only" "int4_weight_only" "both" "QUANT_TYPE"
    
    # Create quantized models in the same repository
    python scripts/model_tonic/quantize_model.py /output-checkpoint "$REPO_NAME" \
        --quant-type "$QUANT_TYPE" \
        --device "$DEVICE" \
        --token "$HF_TOKEN" \
        --trackio-url "$TRACKIO_URL" \
        --experiment-name "${EXPERIMENT_NAME}-${QUANT_TYPE}" \
        --dataset-repo "$TRACKIO_DATASET_REPO"
fi
```

## Standalone Quantization

### Using the Standalone Script

For models already uploaded to Hugging Face Hub:

```bash
python scripts/model_tonic/quantize_standalone.py \
    "your-username/model-name" \
    "your-username/model-name" \
    --quant-type "int8_weight_only" \
    --device "auto" \
    --token "your-hf-token"
```

### Command Line Options

```bash
python scripts/model_tonic/quantize_standalone.py model_path repo_name [options]

Options:
  --quant-type {int8_weight_only,int4_weight_only,int8_dynamic}
                        Quantization type (default: int8_weight_only)
  --device DEVICE       Device for quantization (auto, cpu, cuda)
  --group-size GROUP_SIZE
                        Group size for quantization (default: 128)
  --token TOKEN         Hugging Face token
  --private             Create private repository
  --trackio-url TRACKIO_URL
                        Trackio URL for monitoring
  --experiment-name EXPERIMENT_NAME
                        Experiment name for tracking
  --dataset-repo DATASET_REPO
                        HF Dataset repository
  --save-only           Save quantized model locally without pushing to HF
```

## Loading Quantized Models

### Loading Main Model

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the main model
model = AutoModelForCausalLM.from_pretrained(
    "your-username/model-name",
    device_map="auto",
    torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("your-username/model-name")
```

### Loading int8 Quantized Model (GPU)

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load int8 quantized model (GPU optimized)
model = AutoModelForCausalLM.from_pretrained(
    "your-username/model-name/int8",
    device_map="auto",
    torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("your-username/model-name/int8")
```

### Loading int4 Quantized Model (CPU)

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load int4 quantized model (CPU optimized)
model = AutoModelForCausalLM.from_pretrained(
    "your-username/model-name/int4",
    device_map="cpu",
    torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("your-username/model-name/int4")
```

## Usage Examples

### Text Generation with Quantized Model

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load quantized model
model = AutoModelForCausalLM.from_pretrained("your-username/model-name/int8")
tokenizer = AutoTokenizer.from_pretrained("your-username/model-name/int8")

# Generate text
text = "The future of artificial intelligence is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

### Conversation with Quantized Model

```python
def chat_with_quantized_model(prompt, max_length=100):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=max_length)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

response = chat_with_quantized_model("Hello, how are you today?")
print(response)
```

## Configuration Options

### Quantization Parameters

- **group_size**: Group size for quantization (default: 128)
- **device**: Target device for quantization (auto, cpu, cuda)
- **quant_type**: Type of quantization to apply

### Hardware Requirements

- **Main Model**: GPU with 8GB+ VRAM recommended
- **int8 Model**: GPU with 4GB+ VRAM
- **int4 Model**: CPU deployment possible

## Performance Comparison

| Model Type | Memory Usage | Speed | Accuracy | Use Case |
|------------|--------------|-------|----------|----------|
| Original | 100% | Baseline | Best | Development, Research |
| int8 | ~50% | Faster | Minimal loss | Production GPU |
| int4 | ~25% | Fastest | Some loss | Edge, CPU deployment |

## Best Practices

### When to Use Quantization

1. **int8 (GPU)**: When you need faster inference with minimal accuracy loss
2. **int4 (CPU)**: When deploying to CPU-only environments or edge devices
3. **Both**: When you need flexibility for different deployment scenarios

### Memory Optimization

- Use int8 for GPU deployments with memory constraints
- Use int4 for CPU deployments or very memory-constrained environments
- Consider the trade-off between speed and accuracy

### Deployment Considerations

- Test quantized models on your specific use case
- Monitor performance and accuracy in production
- Consider using the main model for development and quantized versions for deployment

## Troubleshooting

### Common Issues

1. **CUDA Out of Memory**: Reduce batch size or use int8 quantization
2. **Import Errors**: Install torchao: `pip install torchao>=0.10.0`
3. **Model Loading Errors**: Ensure the model path is correct and accessible

### Debugging

```bash
# Test quantization functionality
python tests/test_quantization.py

# Check torchao installation
python -c "import torchao; print('torchao available')"

# Verify model files
ls -la /path/to/model/
```

## Monitoring and Tracking

### Trackio Integration

Quantization events are logged to Trackio:

- `quantization_started`: When quantization begins
- `quantization_completed`: When quantization finishes
- `quantized_model_pushed`: When model is uploaded to HF Hub
- `quantization_failed`: If quantization fails

### Metrics Tracked

- Quantization type and parameters
- Model size reduction
- Upload URLs for quantized models
- Processing time and success status

## Dependencies

### Required Packages

```bash
pip install torchao>=0.10.0
pip install transformers>=4.35.0
pip install huggingface_hub>=0.16.0
```

### Optional Dependencies

```bash
pip install accelerate>=0.20.0  # For device mapping
pip install bitsandbytes>=0.41.0  # For additional quantization
```

## References

- [torchao Documentation](https://huggingface.co/docs/transformers/main/en/quantization/torchao)
- [Hugging Face Model Cards](https://huggingface.co/docs/hub/model-cards)
- [Transformers Quantization Guide](https://huggingface.co/docs/transformers/main/en/quantization)

## Support

For issues and questions:

1. Check the troubleshooting section above
2. Review the test files in `tests/test_quantization.py`
3. Open an issue on the project repository
4. Check the Trackio monitoring for detailed logs