File size: 82,548 Bytes
5f8b28d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b867691
5f8b28d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b867691
 
 
 
 
 
 
 
5f8b28d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb30cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8b28d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
 
5f8b28d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
5f8b28d
4b9e23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8b28d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8b28d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c4baa
 
 
 
 
1fcb282
 
35c4baa
 
 
 
78a7472
b867691
 
35c4baa
 
 
 
 
 
b867691
a8fc78d
 
 
 
 
 
 
5f8b28d
 
a8fc78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
943cfba
 
4b9e23f
 
a8fc78d
 
 
 
4b9e23f
 
 
 
a8fc78d
 
 
 
4b9e23f
 
 
 
cb30cda
 
4b9e23f
 
 
a8fc78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb30cda
 
 
 
 
 
 
 
 
4b9e23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8fc78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8b28d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b867691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c4baa
 
 
 
 
5f8b28d
b867691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c4baa
 
 
 
 
5f8b28d
a8fc78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8b28d
a8fc78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
 
 
 
 
 
cb30cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
cb30cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
 
 
 
cb30cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
 
 
 
 
a8fc78d
4b9e23f
 
 
 
 
 
a8fc78d
cb30cda
 
 
 
 
 
 
 
 
 
 
 
 
a8fc78d
 
5f8b28d
 
a8fc78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
 
a8fc78d
5f8b28d
 
a8fc78d
 
 
 
 
 
5f8b28d
 
a8fc78d
 
 
4b9e23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb30cda
 
 
 
 
 
 
 
 
4b9e23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8b28d
 
4b9e23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb30cda
4b9e23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb30cda
 
 
 
 
 
 
 
 
4b9e23f
cb30cda
4b9e23f
 
 
 
 
 
 
 
 
 
 
 
 
 
cb30cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
 
 
 
 
 
cb30cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
cb30cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8b28d
4b9e23f
5f8b28d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9e23f
cb30cda
4b9e23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb30cda
 
 
 
 
 
 
 
 
4b9e23f
cb30cda
4b9e23f
 
 
 
 
 
 
 
 
 
 
 
 
 
cb30cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8b28d
 
 
 
 
 
 
 
 
a8fc78d
5f8b28d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
#!/usr/bin/env python3
"""
Gradio Interface for SmolLM3/GPT-OSS Fine-tuning Pipeline

This app mirrors the core flow of launch.sh with a click-and-run UI.
Tokens are read from environment variables:
  - HF_WRITE_TOKEN (required)
  - HF_READ_TOKEN (optional; used to switch the Trackio Space token after training)

Key steps (configurable via UI):
  1) Optional HF Dataset repo setup for Trackio
  2) Optional Trackio Space deployment
  3) Training (SmolLM3 or GPT-OSS)
  4) Push trained model to the HF Hub
  5) Optional switch Trackio HF_TOKEN to read token

This uses the existing scripts in scripts/ and config/ to avoid code duplication.
"""

from __future__ import annotations

import os
import sys
import time
import json
import shlex
import traceback
import importlib.util
import re
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
from typing import Dict, Any, Generator, Optional, Tuple

# Third-party
try:
    import gradio as gr  # type: ignore
except Exception as _e:
    raise RuntimeError(
        "Gradio is required. Please install it first: pip install gradio"
    ) from _e


# --------------------------------------------------------------------------------------
# Utilities
# --------------------------------------------------------------------------------------

PROJECT_ROOT = Path(__file__).resolve().parent


def mask_token(token: Optional[str]) -> str:
    if not token:
        return "<not set>"
    token = str(token)
    if len(token) <= 8:
        return "*" * len(token)
    return f"{token[:4]}****{token[-4:]}"


def get_python() -> str:
    return sys.executable or "python"


def get_username_from_token(token: str) -> Optional[str]:
    try:
        from huggingface_hub import HfApi  # type: ignore
        api = HfApi(token=token)
        info = api.whoami()
        if isinstance(info, dict):
            return info.get("name") or info.get("username")
        if isinstance(info, str):
            return info
    except Exception:
        return None
    return None


def detect_nvidia_driver() -> Tuple[bool, str]:
    """Detect NVIDIA driver/GPU presence with multiple strategies.

    Returns (available, human_message).
    """
    # 1) Try torch CUDA
    try:
        import torch  # type: ignore
        if torch.cuda.is_available():
            try:
                num = torch.cuda.device_count()
                names = [torch.cuda.get_device_name(i) for i in range(num)]
                return True, f"NVIDIA GPU detected: {', '.join(names)}"
            except Exception:
                return True, "NVIDIA GPU detected (torch.cuda available)"
    except Exception:
        pass

    # 2) Try NVML via pynvml
    try:
        import pynvml  # type: ignore
        try:
            pynvml.nvmlInit()
            cnt = pynvml.nvmlDeviceGetCount()
            names = []
            for i in range(cnt):
                h = pynvml.nvmlDeviceGetHandleByIndex(i)
                names.append(pynvml.nvmlDeviceGetName(h).decode("utf-8", errors="ignore"))
            drv = pynvml.nvmlSystemGetDriverVersion().decode("utf-8", errors="ignore")
            pynvml.nvmlShutdown()
            if cnt > 0:
                return True, f"NVIDIA driver {drv}; GPUs: {', '.join(names)}"
        except Exception:
            pass
    except Exception:
        pass

    # 3) Try nvidia-smi
    try:
        import subprocess
        res = subprocess.run(["nvidia-smi", "-L"], capture_output=True, text=True, timeout=3)
        if res.returncode == 0 and res.stdout.strip():
            return True, res.stdout.strip().splitlines()[0]
    except Exception:
        pass

    return False, "No NVIDIA driver/GPU detected"


def duplicate_space_hint() -> str:
    space_id = os.environ.get("SPACE_ID") or os.environ.get("HF_SPACE_ID")
    if space_id:
        space_url = f"https://huggingface.co/spaces/{space_id}"
        dup_url = f"{space_url}?duplicate=true"
        return (
            f"ℹ️ No NVIDIA driver detected. If you're on Hugging Face Spaces, "
            f"please duplicate this Space to GPU hardware: [Duplicate this Space]({dup_url})."
        )
    return (
        "ℹ️ No NVIDIA driver detected. To enable training, run on a machine with an NVIDIA GPU/driver "
        "or duplicate this Space on Hugging Face with GPU hardware."
    )


def markdown_links_to_html(text: str) -> str:
    """Convert simple Markdown links [text](url) to HTML anchors for UI rendering."""
    try:
        return re.sub(r"\[([^\]]+)\]\(([^)]+)\)", r'<a href="\2" target="_blank" rel="noopener noreferrer">\1</a>', text)
    except Exception:
        return text


def _write_generated_config(filename: str, content: str) -> Path:
    """Write a generated config under config/ and return the full path."""
    cfg_dir = PROJECT_ROOT / "config"
    cfg_dir.mkdir(parents=True, exist_ok=True)
    path = cfg_dir / filename
    with open(path, "w", encoding="utf-8") as f:
        f.write(content)
    return path


def generate_medical_o1_config_file(
    dataset_config: str,
    system_message: Optional[str],
    developer_message: Optional[str],
    num_train_epochs: float,
    batch_size: int,
    gradient_accumulation_steps: int,
    learning_rate: float,
    max_seq_length: int,
) -> Path:
    """Create a GPT-OSS Medical o1 SFT config file from user inputs."""
    # Sanitize quotes in messages
    def _q(s: Optional[str]) -> str:
        if s is None or s == "":
            return "None"
        return repr(s)

    py = f"""
from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig

config = GPTOSSEnhancedCustomConfig(
    dataset_name="FreedomIntelligence/medical-o1-reasoning-SFT",
    dataset_config={repr(dataset_config)},
    dataset_split="train",
    dataset_format="medical_o1_sft",

    # Field mapping and prefixes
    input_field="Question",
    target_field="Response",
    question_field="Question",
    reasoning_field="Complex_CoT",
    response_field="Response",
    reason_prefix="Reasoning: ",
    answer_prefix="Final Answer: ",

    # Optional context
    system_message={_q(system_message)},
    developer_message={_q(developer_message)},

    # Training hyperparameters
    num_train_epochs={num_train_epochs},
    batch_size={batch_size},
    gradient_accumulation_steps={gradient_accumulation_steps},
    learning_rate={learning_rate},
    min_lr=2e-5,
    weight_decay=0.01,
    warmup_ratio=0.03,

    # Sequence length
    max_seq_length={max_seq_length},

    # Precision & performance
    fp16=False,
    bf16=True,
    dataloader_num_workers=4,
    dataloader_pin_memory=True,
    dataloader_prefetch_factor=2,
    group_by_length=True,
    remove_unused_columns=True,

    # LoRA & quantization
    use_lora=True,
    lora_config={
        "r": 16,
        "lora_alpha": 32,
        "lora_dropout": 0.05,
        "target_modules": "all-linear",
        "target_parameters": [
            "7.mlp.experts.gate_up_proj",
            "7.mlp.experts.down_proj",
            "15.mlp.experts.gate_up_proj",
            "15.mlp.experts.down_proj",
            "23.mlp.experts.gate_up_proj",
            "23.mlp.experts.down_proj",
        ],
        "bias": "none",
        "task_type": "CAUSAL_LM",
    },
    use_quantization=True,
    quantization_config={
        "dequantize": True,
        "load_in_4bit": False,
    },

    # Logging & evaluation
    eval_strategy="steps",
    eval_steps=100,
    logging_steps=10,
    save_strategy="steps",
    save_steps=500,
    save_total_limit=3,
    metric_for_best_model="eval_loss",
    greater_is_better=False,
)
"""
    return _write_generated_config("_generated_gpt_oss_medical_o1_sft.py", py)


def generate_gpt_oss_custom_config_file(
    dataset_name: str,
    dataset_split: str,
    dataset_format: str,
    input_field: str,
    target_field: Optional[str],
    system_message: Optional[str],
    developer_message: Optional[str],
    model_identity: Optional[str],
    max_samples: Optional[int],
    min_length: int,
    max_length: Optional[int],
    num_train_epochs: float,
    batch_size: int,
    gradient_accumulation_steps: int,
    learning_rate: float,
    min_lr: float,
    weight_decay: float,
    warmup_ratio: float,
    max_seq_length: int,
    lora_r: int,
    lora_alpha: int,
    lora_dropout: float,
    mixed_precision: str,  # "bf16"|"fp16"|"fp32"
    num_workers: int,
    quantization_type: str,  # "mxfp4"|"bnb4"|"none"
    max_grad_norm: float,
    logging_steps: int,
    eval_steps: int,
    save_steps: int,
) -> Path:
    # Precision flags
    if mixed_precision.lower() == "bf16":
        fp16_flag = False
        bf16_flag = True
    elif mixed_precision.lower() == "fp16":
        fp16_flag = True
        bf16_flag = False
    else:
        fp16_flag = False
        bf16_flag = False

    # Quantization flags/config
    if quantization_type == "mxfp4":
        use_quant = True
        quant_cfg = '{"dequantize": True, "load_in_4bit": False}'
    elif quantization_type == "bnb4":
        use_quant = True
        quant_cfg = '{"dequantize": False, "load_in_4bit": True, "bnb_4bit_compute_dtype": "bfloat16", "bnb_4bit_use_double_quant": True, "bnb_4bit_quant_type": "nf4"}'
    else:
        use_quant = False
        quant_cfg = '{"dequantize": False, "load_in_4bit": False}'

    def _q(s: Optional[str]) -> str:
        if s is None or s == "":
            return "None"
        return repr(s)

    py = f"""
from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig

config = GPTOSSEnhancedCustomConfig(
    # Dataset
    dataset_name={repr(dataset_name)},
    dataset_split={repr(dataset_split)},
    dataset_format={repr(dataset_format)},
    input_field={repr(input_field)},
    target_field={repr(target_field)} if {repr(target_field)} != 'None' else None,
    system_message={_q(system_message)},
    developer_message={_q(developer_message)},
    max_samples={repr(max_samples)} if {repr(max_samples)} != 'None' else None,
    min_length={min_length},
    max_length={repr(max_length)} if {repr(max_length)} != 'None' else None,

    # Training hyperparameters
    num_train_epochs={num_train_epochs},
    batch_size={batch_size},
    gradient_accumulation_steps={gradient_accumulation_steps},
    learning_rate={learning_rate},
    min_lr={min_lr},
    weight_decay={weight_decay},
    warmup_ratio={warmup_ratio},
    max_grad_norm={max_grad_norm},

    # Model
    max_seq_length={max_seq_length},

    # Precision
    fp16={str(fp16_flag)},
    bf16={str(bf16_flag)},

    # LoRA
    lora_config={{
        "r": {lora_r},
        "lora_alpha": {lora_alpha},
        "lora_dropout": {lora_dropout},
        "target_modules": "all-linear",
        "bias": "none",
        "task_type": "CAUSAL_LM",
    }},

    # Quantization
    use_quantization={str(use_quant)},
    quantization_config={quant_cfg},

    # Performance
    dataloader_num_workers={num_workers},
    dataloader_pin_memory=True,
    group_by_length=True,

    # Logging & eval
    logging_steps={logging_steps},
    eval_steps={eval_steps},
    save_steps={save_steps},
    
    # Chat template (Harmony)
    chat_template_kwargs={{
        "add_generation_prompt": True,
        "tokenize": False,
        "auto_insert_role": True,
        "reasoning_effort": "medium",
        "model_identity": {_q(model_identity) if _q(model_identity) != 'None' else repr('You are GPT-Tonic, a large language model trained by TonicAI.')},
        "builtin_tools": [],
    }},
)
"""
    return _write_generated_config("_generated_gpt_oss_custom.py", py)


def generate_smollm3_custom_config_file(
    model_name: str,
    dataset_name: Optional[str],
    max_seq_length: int,
    batch_size: int,
    gradient_accumulation_steps: int,
    learning_rate: float,
    save_steps: int,
    eval_steps: int,
    logging_steps: int,
    filter_bad_entries: bool,
    input_field: str,
    target_field: str,
    sample_size: Optional[int],
    sample_seed: int,
    trainer_type: str,
) -> Path:
    # Create subclass to include dataset fields similar to other configs
    def _bool(b: bool) -> str:
        return "True" if b else "False"

    ds_section = """
    # HF Dataset configuration
    dataset_name={}
    dataset_split="train"
    input_field={}
    target_field={}
    filter_bad_entries={}
    bad_entry_field="bad_entry"
    sample_size={}
    sample_seed={}
    """.format(
        repr(dataset_name) if dataset_name else "None",
        repr(input_field),
        repr(target_field),
        _bool(filter_bad_entries),
        repr(sample_size) if sample_size is not None else "None",
        sample_seed,
    )

    py = f"""
from dataclasses import dataclass
from typing import Optional
from config.train_smollm3 import SmolLM3Config

@dataclass
class SmolLM3GeneratedConfig(SmolLM3Config):
{ds_section}

config = SmolLM3GeneratedConfig(
    trainer_type={repr(trainer_type.lower())},
    model_name={repr(model_name)},
    max_seq_length={max_seq_length},
    use_flash_attention=True,
    use_gradient_checkpointing=True,

    batch_size={batch_size},
    gradient_accumulation_steps={gradient_accumulation_steps},
    learning_rate={learning_rate},
    weight_decay=0.01,
    warmup_steps=100,
    max_iters=None,
    eval_interval={eval_steps},
    log_interval={logging_steps},
    save_interval={save_steps},

    optimizer="adamw",
    beta1=0.9,
    beta2=0.95,
    eps=1e-8,
    scheduler="cosine",
    min_lr=1e-6,
    fp16=True,
    bf16=False,
    save_steps={save_steps},
    eval_steps={eval_steps},
    logging_steps={logging_steps},
    save_total_limit=3,
    eval_strategy="steps",
    metric_for_best_model="eval_loss",
    greater_is_better=False,
    load_best_model_at_end=True,
)
"""
    return _write_generated_config("_generated_smollm3_custom.py", py)


def generate_smollm3_long_context_config_file(
    model_name: str,
    dataset_name: Optional[str],
    input_field: str,
    target_field: str,
    filter_bad_entries: bool,
    sample_size: Optional[int],
    sample_seed: int,
    max_seq_length: int,
    batch_size: int,
    gradient_accumulation_steps: int,
    learning_rate: float,
    warmup_steps: int,
    max_iters: int,
    save_steps: int,
    eval_steps: int,
    logging_steps: int,
    use_chat_template: bool,
    no_think_system_message: bool,
    trainer_type: str,
) -> Path:
    """Create a SmolLM3 long-context config file with optional dataset fields."""
    def _bool(b: bool) -> str:
        return "True" if b else "False"

    ds_section = """
    # HF Dataset configuration
    dataset_name={}
    dataset_split="train"
    input_field={}
    target_field={}
    filter_bad_entries={}
    bad_entry_field="bad_entry"
    sample_size={}
    sample_seed={}
    """.format(
        repr(dataset_name) if dataset_name else "None",
        repr(input_field),
        repr(target_field),
        _bool(filter_bad_entries),
        repr(sample_size) if sample_size is not None else "None",
        sample_seed,
    )

    py = f"""
from dataclasses import dataclass
from typing import Optional
from config.train_smollm3 import SmolLM3Config

@dataclass
class SmolLM3LongContextGeneratedConfig(SmolLM3Config):
{ds_section}

config = SmolLM3LongContextGeneratedConfig(
    trainer_type={repr(trainer_type.lower())},
    model_name={repr(model_name)},
    max_seq_length={max_seq_length},
    use_flash_attention=True,
    use_gradient_checkpointing=True,

    batch_size={batch_size},
    gradient_accumulation_steps={gradient_accumulation_steps},
    learning_rate={learning_rate},
    weight_decay=0.01,
    warmup_steps={warmup_steps},
    max_iters={max_iters},

    fp16=True,
    bf16=False,
    save_steps={save_steps},
    eval_steps={eval_steps},
    logging_steps={logging_steps},
    save_total_limit=3,
    eval_strategy="steps",
    metric_for_best_model="eval_loss",
    greater_is_better=False,
    load_best_model_at_end=True,

    use_chat_template={_bool(use_chat_template)},
    chat_template_kwargs={{
        "add_generation_prompt": True,
        "no_think_system_message": {_bool(no_think_system_message)}
    }}
)
"""
    return _write_generated_config("_generated_smollm3_long_context.py", py)

def ensure_dataset_repo(username: str, dataset_name: str, token: str) -> Tuple[str, bool, str]:
    """Create or ensure dataset repo exists. Returns (repo_id, created_or_exists, message)."""
    from huggingface_hub import create_repo  # type: ignore
    repo_id = f"{username}/{dataset_name}"
    try:
        create_repo(repo_id=repo_id, repo_type="dataset", token=token, exist_ok=True, private=False)
        return repo_id, True, f"Dataset repo ready: {repo_id}"
    except Exception as e:
        return repo_id, False, f"Failed to create dataset repo {repo_id}: {e}"


def import_config_object(config_path: Path) -> Optional[Any]:
    """Import a config file and return its 'config' object if present, else None."""
    try:
        spec = importlib.util.spec_from_file_location("config_module", str(config_path))
        if not spec or not spec.loader:
            return None
        module = importlib.util.module_from_spec(spec)
        spec.loader.exec_module(module)  # type: ignore
        if hasattr(module, "config"):
            return getattr(module, "config")
        return None
    except Exception:
        return None


def run_command_stream(args: list[str], env: Dict[str, str], cwd: Optional[Path] = None) -> Generator[str, None, int]:
    """Run a command and yield stdout/stderr lines as they arrive. Returns exit code at the end."""
    import subprocess

    yield f"$ {' '.join(shlex.quote(a) for a in ([get_python()] + args))}"
    process = subprocess.Popen(
        [get_python()] + args,
        stdout=subprocess.PIPE,
        stderr=subprocess.STDOUT,
        text=True,
        env=env,
        cwd=str(cwd or PROJECT_ROOT),
        bufsize=1,
        universal_newlines=True,
    )
    assert process.stdout is not None
    for line in iter(process.stdout.readline, ""):
        yield line.rstrip()
    process.stdout.close()
    code = process.wait()
    yield f"[exit_code={code}]"
    return code


# --------------------------------------------------------------------------------------
# Configuration Mappings (mirror launch.sh)
# --------------------------------------------------------------------------------------

SMOL_CONFIGS = {
    "Basic Training": {
        "config_file": "config/train_smollm3.py",
        "default_model": "HuggingFaceTB/SmolLM3-3B",
    },
    "H100 Lightweight (Rapid)": {
        "config_file": "config/train_smollm3_h100_lightweight.py",
        "default_model": "HuggingFaceTB/SmolLM3-3B",
    },
    "A100 Large Scale": {
        "config_file": "config/train_smollm3_openhermes_fr_a100_large.py",
        "default_model": "HuggingFaceTB/SmolLM3-3B",
    },
    "Multiple Passes": {
        "config_file": "config/train_smollm3_openhermes_fr_a100_multiple_passes.py",
        "default_model": "HuggingFaceTB/SmolLM3-3B",
    },
}

GPT_OSS_CONFIGS = {
    "GPT-OSS Basic Training": {
        "config_file": "config/train_gpt_oss_basic.py",
        "default_model": "openai/gpt-oss-20b",
    },
    "GPT-OSS H100 Optimized": {
        "config_file": "config/train_gpt_oss_h100_optimized.py",
        "default_model": "openai/gpt-oss-20b",
    },
    "GPT-OSS Multilingual Reasoning": {
        "config_file": "config/train_gpt_oss_multilingual_reasoning.py",
        "default_model": "openai/gpt-oss-20b",
    },
    "GPT-OSS Memory Optimized": {
        "config_file": "config/train_gpt_oss_memory_optimized.py",
        "default_model": "openai/gpt-oss-20b",
    },
    "GPT-OSS OpenHermes-FR (Recommended)": {
        "config_file": "config/train_gpt_oss_openhermes_fr.py",
        "default_model": "openai/gpt-oss-20b",
    },
    "GPT-OSS OpenHermes-FR Memory Optimized": {
        "config_file": "config/train_gpt_oss_openhermes_fr_memory_optimized.py",
        "default_model": "openai/gpt-oss-20b",
    },
    # Custom dataset and medical SFT can be added later as advanced UI panels
}


def get_config_map(family: str) -> Dict[str, Dict[str, str]]:
    return SMOL_CONFIGS if family == "SmolLM3" else GPT_OSS_CONFIGS


# --------------------------------------------------------------------------------------
# Pipeline Orchestration
# --------------------------------------------------------------------------------------

@dataclass
class PipelineInputs:
    model_family: str
    config_choice: str
    trainer_type: str  # "SFT" | "DPO"
    monitoring_mode: str  # "both" | "trackio" | "dataset" | "none"
    experiment_name: str
    repo_short: str
    author_name: str
    model_description: str
    trackio_space_name: Optional[str]
    deploy_trackio_space: bool
    create_dataset_repo: bool
    push_to_hub: bool
    switch_to_read_after: bool
    scheduler_override: Optional[str]
    min_lr: Optional[float]
    min_lr_rate: Optional[float]
    # Optional override config path generated from Advanced tab
    override_config_path: Optional[str] = None


def make_defaults(model_family: str) -> Tuple[str, str]:
    ts = datetime.now().strftime("%Y%m%d_%H%M%S")
    family_slug = "gpt-oss" if model_family == "GPT-OSS" else "smollm3"
    exp = f"smolfactory-{family_slug}_{ts}"
    repo_short = f"smolfactory-{datetime.now().strftime('%Y%m%d')}"
    return exp, repo_short


def run_pipeline(params: PipelineInputs) -> Generator[str, None, None]:
    # Tokens from environment
    write_token = os.environ.get("HF_WRITE_TOKEN") or os.environ.get("HF_TOKEN")
    read_token = os.environ.get("HF_READ_TOKEN")

    if not write_token:
        yield "❌ HF_WRITE_TOKEN (or HF_TOKEN) is not set in the environment."
        return

    # Resolve username
    username = get_username_from_token(write_token) or os.environ.get("HF_USERNAME")
    if not username:
        yield "❌ Could not resolve Hugging Face username from token."
        return
    yield f"✅ Authenticated as: {username}"

    # Compute Trackio URL if applicable
    trackio_url: Optional[str] = None
    if params.monitoring_mode != "none" and params.trackio_space_name:
        trackio_url = f"https://huggingface.co/spaces/{username}/{params.trackio_space_name}"
        yield f"Trackio Space URL: {trackio_url}"

    # Decide space deploy token per monitoring mode
    space_deploy_token = write_token if params.monitoring_mode in ("both", "trackio") else (read_token or write_token)

    # Dataset repo setup
    dataset_repo = f"{username}/trackio-experiments"
    if params.create_dataset_repo and params.monitoring_mode != "none":
        yield f"Creating/ensuring dataset repo exists: {dataset_repo}"
        rid, ok, msg = ensure_dataset_repo(username, "trackio-experiments", write_token)
        yield ("✅ " if ok else "⚠️ ") + msg
        dataset_repo = rid

    # Resolve config file and model name (allow override from Advanced tab)
    conf_map = get_config_map(params.model_family)
    if params.override_config_path:
        config_file = Path(params.override_config_path)
        if not config_file.exists():
            yield f"❌ Generated config file not found: {config_file}"
            return
        # Best-effort to infer base model from generated config
        cfg_obj = import_config_object(config_file)
        base_model_fallback = getattr(cfg_obj, "model_name", None) or (
            conf_map.get(params.config_choice, {}).get("default_model", "")
        )
    else:
        if params.config_choice not in conf_map:
            yield f"❌ Unknown config choice: {params.config_choice}"
            return
        config_file = PROJECT_ROOT / conf_map[params.config_choice]["config_file"]
        base_model_fallback = conf_map[params.config_choice]["default_model"]
        if not config_file.exists():
            yield f"❌ Config file not found: {config_file}"
            return
        cfg_obj = import_config_object(config_file)
    base_model = getattr(cfg_obj, "model_name", base_model_fallback) if cfg_obj else base_model_fallback
    dataset_name = getattr(cfg_obj, "dataset_name", None) if cfg_obj else None
    batch_size = getattr(cfg_obj, "batch_size", None) if cfg_obj else None
    learning_rate = getattr(cfg_obj, "learning_rate", None) if cfg_obj else None
    max_seq_length = getattr(cfg_obj, "max_seq_length", None) if cfg_obj else None

    # Prepare env for subprocesses
    env = os.environ.copy()
    env["HF_TOKEN"] = write_token
    env["HUGGING_FACE_HUB_TOKEN"] = write_token
    env["HF_USERNAME"] = username
    env["TRACKIO_DATASET_REPO"] = dataset_repo
    env["MONITORING_MODE"] = params.monitoring_mode

    # Optional Trackio Space deployment
    if params.deploy_trackio_space and params.monitoring_mode != "none" and params.trackio_space_name:
        yield f"\n=== Deploying Trackio Space: {params.trackio_space_name} ==="
        # deploy_trackio_space.py expects: space_name, token, git_email, git_name, dataset_repo
        args = [
            str(PROJECT_ROOT / "scripts/trackio_tonic/deploy_trackio_space.py"),
            params.trackio_space_name,
            space_deploy_token,
            f"{username}@users.noreply.hf.co",
            username,
            dataset_repo,
        ]
        for line in run_command_stream(args, env, cwd=PROJECT_ROOT / "scripts/trackio_tonic"):
            yield line

    # Dataset setup and Trackio configuration (mirror launch.sh) when monitoring is enabled
    if params.monitoring_mode != "none":
        # Ensure HF Dataset structure
        yield f"\n=== Setting up HF Dataset: {dataset_repo} ==="
        ds_args = [
            str(PROJECT_ROOT / "scripts/dataset_tonic/setup_hf_dataset.py"),
            write_token,
        ]
        for line in run_command_stream(ds_args, env, cwd=PROJECT_ROOT / "scripts/dataset_tonic"):
            yield line
        # Configure Trackio Space
        yield f"\n=== Configuring Trackio Space ({params.trackio_space_name or 'N/A'}) ==="
        conf_args = [str(PROJECT_ROOT / "scripts/trackio_tonic/configure_trackio.py")]
        # Use space deploy token (READ for dataset-only; WRITE otherwise)
        conf_env = env.copy()
        conf_env["HF_TOKEN"] = space_deploy_token
        conf_env["HUGGING_FACE_HUB_TOKEN"] = space_deploy_token
        for line in run_command_stream(conf_args, conf_env, cwd=PROJECT_ROOT / "scripts/trackio_tonic"):
            yield line

    # Training output directory
    out_dir = PROJECT_ROOT / "outputs" / f"{params.experiment_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
    out_dir.mkdir(parents=True, exist_ok=True)
    yield f"\nOutput directory: {out_dir}"

    # Scheduler overrides (GPT-OSS only)
    if params.model_family == "GPT-OSS" and params.scheduler_override:
        env["GPT_OSS_SCHEDULER"] = params.scheduler_override
        if params.min_lr is not None:
            env["GPT_OSS_MIN_LR"] = str(params.min_lr)
        if params.min_lr_rate is not None:
            env["GPT_OSS_MIN_LR_RATE"] = str(params.min_lr_rate)

    # Start training
    yield f"\n=== Starting Training ({params.model_family}) ==="
    if params.model_family == "GPT-OSS":
        args = [
            str(PROJECT_ROOT / "scripts/training/train_gpt_oss.py"),
            "--config", str(config_file),
            "--experiment-name", params.experiment_name,
            "--output-dir", str(out_dir),
            "--trackio-url", trackio_url or "",
            "--trainer-type", params.trainer_type.lower(),
        ]
    else:
        args = [
            str(PROJECT_ROOT / "scripts/training/train.py"),
            "--config", str(config_file),
            "--experiment-name", params.experiment_name,
            "--output-dir", str(out_dir),
            "--trackio-url", trackio_url or "",
            "--trainer-type", params.trainer_type.lower(),
        ]

    # Stream training logs
    train_failed = False
    for line in run_command_stream(args, env):
        yield line
        if line.strip().startswith("[exit_code=") and not line.strip().endswith("[exit_code=0]"):
            train_failed = True
    if train_failed:
        yield "❌ Training failed. Aborting remaining steps."
        return

    # Push to Hub
    if params.push_to_hub:
        yield "\n=== Pushing Model to Hugging Face Hub ==="
        repo_name = f"{username}/{params.repo_short}"
        if params.model_family == "GPT-OSS":
            push_args = [
                str(PROJECT_ROOT / "scripts/model_tonic/push_gpt_oss_to_huggingface.py"),
                str(out_dir),
                repo_name,
                "--token", write_token,
                "--trackio-url", trackio_url or "",
                "--experiment-name", params.experiment_name,
                "--dataset-repo", dataset_repo,
                "--author-name", params.author_name or username,
                "--model-description", params.model_description,
                "--training-config-type", params.config_choice,
                "--model-name", base_model,
            ]
            if dataset_name:
                push_args += ["--dataset-name", str(dataset_name)]
            if batch_size is not None:
                push_args += ["--batch-size", str(batch_size)]
            if learning_rate is not None:
                push_args += ["--learning-rate", str(learning_rate)]
            if max_seq_length is not None:
                push_args += ["--max-seq-length", str(max_seq_length)]
            push_args += ["--trainer-type", params.trainer_type]
        else:
            push_args = [
                str(PROJECT_ROOT / "scripts/model_tonic/push_to_huggingface.py"),
                str(out_dir),
                repo_name,
                "--token", write_token,
                "--trackio-url", trackio_url or "",
                "--experiment-name", params.experiment_name,
                "--dataset-repo", dataset_repo,
                "--author-name", params.author_name or username,
                "--model-description", params.model_description,
                "--training-config-type", params.config_choice,
                "--model-name", base_model,
            ]
            if dataset_name:
                push_args += ["--dataset-name", str(dataset_name)]
            if batch_size is not None:
                push_args += ["--batch-size", str(batch_size)]
            if learning_rate is not None:
                push_args += ["--learning-rate", str(learning_rate)]
            if max_seq_length is not None:
                push_args += ["--max-seq-length", str(max_seq_length)]
            push_args += ["--trainer-type", params.trainer_type]

        for line in run_command_stream(push_args, env):
            yield line

    # Switch Space token to read-only (security)
    if params.switch_to_read_after and params.monitoring_mode in ("both", "trackio") and params.trackio_space_name and read_token:
        yield "\n=== Switching Trackio Space HF_TOKEN to READ token ==="
        space_id = f"{username}/{params.trackio_space_name}"
        sw_args = [
            str(PROJECT_ROOT / "scripts/trackio_tonic/switch_to_read_token.py"),
            space_id,
            read_token,
            write_token,
        ]
        for line in run_command_stream(sw_args, env, cwd=PROJECT_ROOT / "scripts/trackio_tonic"):
            yield line
    elif params.switch_to_read_after and not read_token:
        yield "⚠️ HF_READ_TOKEN not set; skipping token switch."

    # Final summary
    yield "\n🎉 Pipeline completed."
    if params.monitoring_mode != "none" and trackio_url:
        yield f"Trackio: {trackio_url}"
    yield f"Model repo (if pushed): https://huggingface.co/{username}/{params.repo_short}"
    yield f"Outputs: {out_dir}"


# --------------------------------------------------------------------------------------
# Gradio UI
# --------------------------------------------------------------------------------------

MODEL_FAMILIES = ["SmolLM3", "GPT-OSS"]
TRAINER_CHOICES = ["SFT", "DPO"]
MONITORING_CHOICES = ["both", "trackio", "dataset", "none"]
SCHEDULER_CHOICES = [None, "linear", "cosine", "cosine_with_min_lr", "constant"]


def ui_defaults(family: str) -> Tuple[str, str, str, str]:
    exp, repo_short = make_defaults(family)
    default_desc = (
        "A fine-tuned GPT-OSS-20B model optimized for multilingual reasoning and instruction following."
        if family == "GPT-OSS"
        else "A fine-tuned SmolLM3-3B model optimized for instruction following and French language tasks."
    )
    trackio_space_name = f"trackio-monitoring-{datetime.now().strftime('%Y%m%d')}"
    return exp, repo_short, default_desc, trackio_space_name


title_md = """
# 🙋🏻‍♂️ Welcome to 🌟Tonic's 🤏🏻🏭 SmolFactory !
"""

howto_md = """
### How to use
To get started: duplicate the space, select a model family and a configuration, click run.
"""

joinus_md = """
### Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [Join us on Discord](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""

# Load inline SVG to render before the Join Us section
try:
    _OUTPUT_SVG_HTML = (PROJECT_ROOT / "docs" / "output.svg").read_text(encoding="utf-8")
except Exception:
    _OUTPUT_SVG_HTML = ""


def on_family_change(family: str):
    """Update UI when the model family changes.

    - Refresh available prebuilt configuration choices
    - Reset defaults (experiment name, repo short, description, space name)
    - Reveal the next step (trainer type)
    """
    confs = list(get_config_map(family).keys())
    exp, repo_short, desc, space = ui_defaults(family)

    # Initial dataset information placeholder until a specific config is chosen
    training_md = (
        f"Select a training configuration for {family} to see details (dataset, batch size, etc.)."
    )

    # Update objects:
    return (
        gr.update(choices=confs, value=(confs[0] if confs else None)),
        exp,
        repo_short,
        desc,
        space,
        training_md,
        gr.update(choices=[], value=None),
        gr.update(visible=True),   # show step 2 (trainer)
        gr.update(visible=True),   # show step 3 immediately (default monitoring 'dataset')
        gr.update(visible=True),   # show step 4 immediately so users see configs
        gr.update(visible=False),  # GPT-OSS advanced group hidden until enabled
        gr.update(visible=False),  # SmolLM3 advanced group hidden until enabled
    )


def on_config_change(family: str, config_choice: str):
    """When a prebuilt configuration is selected, update dataset info and helpful details.

    Also auto-fill advanced fields with defaults from the selected config.
    """
    if not config_choice:
        return (
            "",
            gr.update(choices=[], value=None),
            # Advanced fields (GPT-OSS)
            "", "train", "openhermes_fr", "prompt", "accepted_completion", "", "", "",
            None, 10, None, 1.0, 4, 4, 2e-4, 2e-5, 0.01, 0.03,
            2048, 16, 32, 0.05, "bf16", 4, "mxfp4", 1.0, 10, 100, 500,
            # GPT-OSS Medical o1 SFT defaults
            "default", "", "", 1.0, 4, 4, 2e-4, 2048,
            # Advanced fields (SmolLM3)
            "HuggingFaceTB/SmolLM3-3B", None, "prompt", "completion", False, None, 42,
            4096, 2, 8, 5e-6, 500, 100, 10,
        )

    conf_map = get_config_map(family)
    cfg_path = PROJECT_ROOT / conf_map[config_choice]["config_file"]
    cfg_obj = import_config_object(cfg_path)

    dataset_name = getattr(cfg_obj, "dataset_name", None) if cfg_obj else None
    batch_size = getattr(cfg_obj, "batch_size", None) if cfg_obj else None
    learning_rate = getattr(cfg_obj, "learning_rate", None) if cfg_obj else None
    max_seq_length = getattr(cfg_obj, "max_seq_length", None) if cfg_obj else None
    base_model = conf_map[config_choice]["default_model"]

    md_lines = [
        f"**Configuration**: {config_choice}",
        f"**Base model**: {base_model}",
    ]
    if dataset_name:
        md_lines.append(f"**Dataset**: `{dataset_name}`")
    if batch_size is not None:
        md_lines.append(f"**Batch size**: {batch_size}")
    if learning_rate is not None:
        md_lines.append(f"**Learning rate**: {learning_rate}")
    if max_seq_length is not None:
        md_lines.append(f"**Max seq length**: {max_seq_length}")

    training_md = "\n".join(md_lines)

    # dataset selection (allow custom but prefill with the config's dataset if any)
    ds_choices = [dataset_name] if dataset_name else []

    # Defaults for Advanced (GPT-OSS)
    adv_dataset_name = dataset_name or ("HuggingFaceH4/Multilingual-Thinking" if family == "GPT-OSS" else (dataset_name or ""))
    adv_dataset_split = getattr(cfg_obj, "dataset_split", "train") if cfg_obj else "train"
    # Infer dataset_format heuristically
    if family == "GPT-OSS":
        adv_dataset_format = getattr(cfg_obj, "dataset_format", None) or (
            "messages" if getattr(cfg_obj, "input_field", "") == "messages" else "openhermes_fr"
        )
        adv_input_field = getattr(cfg_obj, "input_field", "prompt")
        adv_target_field = getattr(cfg_obj, "target_field", "accepted_completion") or ""
        adv_num_train_epochs = float(getattr(cfg_obj, "num_train_epochs", 1.0)) if cfg_obj and hasattr(cfg_obj, "num_train_epochs") else 1.0
        adv_batch_size = int(getattr(cfg_obj, "batch_size", 4) or 4)
        adv_gas = int(getattr(cfg_obj, "gradient_accumulation_steps", 4) or 4)
        adv_lr = float(getattr(cfg_obj, "learning_rate", 2e-4) or 2e-4)
        adv_min_lr = float(getattr(cfg_obj, "min_lr", 2e-5) or 2e-5)
        adv_wd = float(getattr(cfg_obj, "weight_decay", 0.01) or 0.01)
        adv_warmup = float(getattr(cfg_obj, "warmup_ratio", 0.03) or 0.03)
        adv_msl = int(getattr(cfg_obj, "max_seq_length", 2048) or 2048)
        lora_cfg = getattr(cfg_obj, "lora_config", {}) or {}
        adv_lora_r = int(lora_cfg.get("r", 16))
        adv_lora_alpha = int(lora_cfg.get("lora_alpha", 32))
        adv_lora_dropout = float(lora_cfg.get("lora_dropout", 0.05))
        adv_mixed_precision = "bf16" if getattr(cfg_obj, "bf16", True) else ("fp16" if getattr(cfg_obj, "fp16", False) else "fp32")
        adv_num_workers = int(getattr(cfg_obj, "dataloader_num_workers", 4) or 4)
        qcfg = getattr(cfg_obj, "quantization_config", {}) or {}
        if qcfg.get("load_in_4bit", False):
            adv_quantization_type = "bnb4"
        elif qcfg.get("dequantize", False):
            adv_quantization_type = "mxfp4"
        else:
            adv_quantization_type = "none"
        adv_mgn = float(getattr(cfg_obj, "max_grad_norm", 1.0) or 1.0)
        adv_log = int(getattr(cfg_obj, "logging_steps", 10) or 10)
        adv_eval = int(getattr(cfg_obj, "eval_steps", 100) or 100)
        adv_save = int(getattr(cfg_obj, "save_steps", 500) or 500)
    else:
        # SmolLM3 defaults for Advanced
        adv_dataset_format = "openhermes_fr"
        adv_input_field = getattr(cfg_obj, "input_field", "prompt") if cfg_obj else "prompt"
        adv_target_field = getattr(cfg_obj, "target_field", "completion") if cfg_obj else "completion"
        adv_num_train_epochs = 1.0
        adv_batch_size = int(getattr(cfg_obj, "batch_size", 2) or 2)
        adv_gas = int(getattr(cfg_obj, "gradient_accumulation_steps", 8) or 8)
        adv_lr = float(getattr(cfg_obj, "learning_rate", 5e-6) or 5e-6)
        adv_min_lr = float(getattr(cfg_obj, "min_lr", 1e-6) or 1e-6)
        adv_wd = float(getattr(cfg_obj, "weight_decay", 0.01) or 0.01)
        adv_warmup = float(getattr(cfg_obj, "warmup_steps", 100) or 100)  # Smol uses steps
        adv_msl = int(getattr(cfg_obj, "max_seq_length", 4096) or 4096)
        adv_lora_r = 16
        adv_lora_alpha = 32
        adv_lora_dropout = 0.05
        adv_mixed_precision = "fp16" if getattr(cfg_obj, "fp16", True) else ("bf16" if getattr(cfg_obj, "bf16", False) else "fp32")
        adv_num_workers = int(getattr(cfg_obj, "dataloader_num_workers", 4) or 4)
        adv_quantization_type = "none"
        adv_mgn = float(getattr(cfg_obj, "max_grad_norm", 1.0) or 1.0)
        adv_log = int(getattr(cfg_obj, "logging_steps", 10) or 10)
        adv_eval = int(getattr(cfg_obj, "eval_steps", 100) or 100)
        adv_save = int(getattr(cfg_obj, "save_steps", 500) or 500)

    # SmolLM3 advanced model/dataset
    adv_sm_model_name = getattr(cfg_obj, "model_name", "HuggingFaceTB/SmolLM3-3B") if cfg_obj else "HuggingFaceTB/SmolLM3-3B"
    adv_sm_dataset_name = dataset_name if family == "SmolLM3" else None
    adv_sm_input_field = adv_input_field
    adv_sm_target_field = adv_target_field
    adv_sm_filter_bad = bool(getattr(cfg_obj, "filter_bad_entries", False)) if cfg_obj else False
    adv_sm_sample_size = getattr(cfg_obj, "sample_size", None)
    adv_sm_sample_seed = getattr(cfg_obj, "sample_seed", 42)

    return (
        training_md,
        gr.update(choices=ds_choices, value=(dataset_name or None)),
        # Advanced (GPT-OSS)
        adv_dataset_name,
        adv_dataset_split,
        adv_dataset_format,
        adv_input_field,
        adv_target_field,
        getattr(cfg_obj, "system_message", None) if cfg_obj else "",
        getattr(cfg_obj, "developer_message", None) if cfg_obj else "",
        getattr(cfg_obj, "chat_template_kwargs", {}).get("model_identity") if cfg_obj and getattr(cfg_obj, "chat_template_kwargs", None) else "",
        getattr(cfg_obj, "max_samples", None) if cfg_obj else None,
        int(getattr(cfg_obj, "min_length", 10) or 10) if cfg_obj else 10,
        getattr(cfg_obj, "max_length", None) if cfg_obj else None,
        adv_num_train_epochs,
        adv_batch_size,
        adv_gas,
        adv_lr,
        adv_min_lr,
        adv_wd,
        adv_warmup,
        adv_msl,
        adv_lora_r,
        adv_lora_alpha,
        adv_lora_dropout,
        adv_mixed_precision,
        adv_num_workers,
        adv_quantization_type,
        adv_mgn,
        adv_log,
        adv_eval,
        adv_save,
        # GPT-OSS Medical o1 SFT defaults
        "default",
        "",
        "",
        1.0,
        4,
        4,
        2e-4,
        2048,
        # Advanced (SmolLM3)
        adv_sm_model_name,
        adv_sm_dataset_name,
        adv_sm_input_field,
        adv_sm_target_field,
        adv_sm_filter_bad,
        adv_sm_sample_size,
        adv_sm_sample_seed,
        # SmolLM3 training overrides
        int(getattr(cfg_obj, "max_seq_length", 4096) or 4096) if family == "SmolLM3" else 4096,
        int(getattr(cfg_obj, "batch_size", 2) or 2) if family == "SmolLM3" else 2,
        int(getattr(cfg_obj, "gradient_accumulation_steps", 8) or 8) if family == "SmolLM3" else 8,
        float(getattr(cfg_obj, "learning_rate", 5e-6) or 5e-6) if family == "SmolLM3" else 5e-6,
        int(getattr(cfg_obj, "save_steps", 500) or 500) if family == "SmolLM3" else 500,
        int(getattr(cfg_obj, "eval_steps", 100) or 100) if family == "SmolLM3" else 100,
        int(getattr(cfg_obj, "logging_steps", 10) or 10) if family == "SmolLM3" else 10,
    )


def on_trainer_selected(_: str):
    """Reveal monitoring step once trainer type is chosen."""
    return gr.update(visible=True)


def on_monitoring_change(mode: str):
    """Reveal configuration/details step and adjust Trackio-related visibility by mode."""
    show_trackio = mode in ("both", "trackio")
    show_dataset_repo = mode != "none"
    return (
        gr.update(visible=True),
        gr.update(visible=show_trackio),  # trackio space name
        gr.update(visible=show_trackio),  # deploy trackio space
        gr.update(visible=show_dataset_repo),  # create dataset repo
    )


def start_pipeline(
    model_family: str,
    config_choice: str,
    trainer_type: str,
    monitoring_mode: str,
    experiment_name: str,
    repo_short: str,
    author_name: str,
    model_description: str,
    trackio_space_name: str,
    deploy_trackio_space: bool,
    create_dataset_repo: bool,
    push_to_hub: bool,
    switch_to_read_after: bool,
    scheduler_override: Optional[str],
    min_lr: Optional[float],
    min_lr_rate: Optional[float],
) -> Generator[str, None, None]:
    try:
        params = PipelineInputs(
            model_family=model_family,
            config_choice=config_choice,
            trainer_type=trainer_type,
            monitoring_mode=monitoring_mode,
            experiment_name=experiment_name,
            repo_short=repo_short,
            author_name=author_name,
            model_description=model_description,
            trackio_space_name=trackio_space_name or None,
            deploy_trackio_space=deploy_trackio_space,
            create_dataset_repo=create_dataset_repo,
            push_to_hub=push_to_hub,
            switch_to_read_after=switch_to_read_after,
            scheduler_override=(scheduler_override or None),
            min_lr=min_lr,
            min_lr_rate=min_lr_rate,
        )

        # Show token presence
        write_token = os.environ.get("HF_WRITE_TOKEN") or os.environ.get("HF_TOKEN")
        read_token = os.environ.get("HF_READ_TOKEN")
        yield f"HF_WRITE_TOKEN: {mask_token(write_token)}"
        yield f"HF_READ_TOKEN:  {mask_token(read_token)}"

        # Run the orchestrated pipeline
        for line in run_pipeline(params):
            yield line
            # Small delay for smoother streaming
            time.sleep(0.01)
    except Exception as e:
        yield f"❌ Error: {e}"
        tb = traceback.format_exc(limit=2)
        yield tb


with gr.Blocks(title="SmolLM3 / GPT-OSS Fine-tuning Pipeline") as demo:
    # GPU/driver detection banner
    has_gpu, gpu_msg = detect_nvidia_driver()
    if has_gpu:
        gr.HTML(
            f"""
            <div style="background-color: rgba(59, 130, 246, 0.1); border: 1px solid rgba(59, 130, 246, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;">
                <p style="color: rgb(59, 130, 246); margin: 0; font-size: 14px; font-weight: 600;">
                    ✅ NVIDIA GPU ready — {gpu_msg}
                </p>
                <p style="color: rgb(59, 130, 246); margin: 6px 0 0; font-size: 12px;">
                    Reads tokens from environment: <code>HF_WRITE_TOKEN</code> (required), <code>HF_READ_TOKEN</code> (optional)
                </p>
                <p style="color: rgb(59, 130, 246); margin: 4px 0 0; font-size: 12px;">
                    Select a config and run training; optionally deploy Trackio and push to Hub
                </p>
            </div>
            """
        )
        gr.Markdown(title_md)
        gr.Markdown(howto_md)
        if _OUTPUT_SVG_HTML:
            gr.HTML(_OUTPUT_SVG_HTML)
        gr.Markdown(joinus_md)
    else:
        hint_html = markdown_links_to_html(duplicate_space_hint())
        gr.HTML(
            f"""
            <div style="background-color: rgba(245, 158, 11, 0.1); border: 1px solid rgba(245, 158, 11, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;">
                <p style="color: rgb(234, 88, 12); margin: 0; font-size: 14px; font-weight: 600;">
                    ⚠️ No NVIDIA GPU/driver detected — training requires a GPU runtime
                </p>
                <p style="color: rgb(234, 88, 12); margin: 6px 0 0; font-size: 12px;">
                    {hint_html}
                </p>
                <p style="color: rgb(234, 88, 12); margin: 4px 0 0; font-size: 12px;">
                    Reads tokens from environment: <code>HF_WRITE_TOKEN</code> (required), <code>HF_READ_TOKEN</code> (optional)
                </p>
                <p style="color: rgb(234, 88, 12); margin: 4px 0 0; font-size: 12px;">
                    You can still configure and push, but training requires a GPU runtime.
                </p>
            </div>
            """
        )
        gr.Markdown(title_md)
        gr.Markdown(howto_md)
        if _OUTPUT_SVG_HTML:
            gr.HTML(_OUTPUT_SVG_HTML)
        gr.Markdown(joinus_md)

    # --- Progressive interface --------------------------------------------------------
    gr.Markdown("### Configure your run in simple steps")

    # Step 1: Model family
    with gr.Group():
        model_family = gr.Dropdown(choices=MODEL_FAMILIES, value="SmolLM3", label="1) Model family")

    # Step 2: Trainer (revealed after family)
    step2_group = gr.Group(visible=False)
    with step2_group:
        trainer_type = gr.Radio(choices=TRAINER_CHOICES, value="SFT", label="2) Trainer type")

    # Step 3: Monitoring (revealed after trainer)
    step3_group = gr.Group(visible=False)
    with step3_group:
        monitoring_mode = gr.Dropdown(choices=MONITORING_CHOICES, value="dataset", label="3) Monitoring mode")

    # Step 4: Config & details (revealed after monitoring)
    step4_group = gr.Group(visible=False)
    with step4_group:
        # Defaults based on initial family selection
        exp_default, repo_default, desc_default, trackio_space_default = ui_defaults("SmolLM3")

        config_choice = gr.Dropdown(
            choices=list(get_config_map("SmolLM3").keys()),
            value="Basic Training",
            label="4) Training configuration",
        )

        with gr.Tabs():
            with gr.Tab("Overview"):
                training_info = gr.Markdown("Select a training configuration to see details.")
                dataset_choice = gr.Dropdown(
                    choices=[],
                    value=None,
                    allow_custom_value=True,
                    label="Dataset (from config; optional)",
                )
                with gr.Row():
                    experiment_name = gr.Textbox(value=exp_default, label="Experiment name")
                    repo_short = gr.Textbox(value=repo_default, label="Model repo (short name)")
                with gr.Row():
                    author_name = gr.Textbox(value=os.environ.get("HF_USERNAME", ""), label="Author name")
                    model_description = gr.Textbox(value=desc_default, label="Model description")
                trackio_space_name = gr.Textbox(
                    value=trackio_space_default,
                    label="Trackio Space name (used when monitoring != none)",
                    visible=False,
                )
                deploy_trackio_space = gr.Checkbox(value=True, label="Deploy Trackio Space", visible=False)
                create_dataset_repo = gr.Checkbox(value=True, label="Create/ensure HF Dataset repo", visible=True)
                with gr.Row():
                    push_to_hub = gr.Checkbox(value=True, label="Push model to Hugging Face Hub")
                    switch_to_read_after = gr.Checkbox(value=True, label="Switch Space token to READ after training")

            with gr.Tab("Advanced"):
                # GPT-OSS specific scheduler overrides
                advanced_enabled = gr.Checkbox(value=False, label="Use advanced overrides (generate config)")

                # Family-specific advanced groups
                gpt_oss_advanced_group = gr.Group(visible=False)
                with gpt_oss_advanced_group:
                    gr.Markdown("Advanced configuration for GPT-OSS")
                    adv_gpt_mode = gr.Radio(
                        choices=["custom", "medical_o1_sft"],
                        value="custom",
                        label="Advanced mode",
                    )

                    # --- GPT-OSS Custom advanced controls ---
                    gpt_oss_custom_group = gr.Group(visible=True)
                    with gpt_oss_custom_group:
                        with gr.Accordion("Dataset", open=True):
                            adv_dataset_name = gr.Textbox(value="", label="Dataset name")
                            with gr.Row():
                                adv_dataset_split = gr.Textbox(value="train", label="Dataset split")
                                adv_dataset_format = gr.Dropdown(
                                    choices=["openhermes_fr", "messages", "text"],
                                    value="openhermes_fr",
                                    label="Dataset format",
                                )
                            with gr.Row():
                                adv_input_field = gr.Textbox(value="prompt", label="Input field")
                                adv_target_field = gr.Textbox(value="accepted_completion", label="Target field (optional)")
                            with gr.Row():
                                adv_system_message = gr.Textbox(value="", label="System message (optional)")
                                adv_developer_message = gr.Textbox(value="", label="Developer message (optional)")
                            adv_model_identity = gr.Textbox(value="", label="Model identity (optional)")
                            with gr.Row():
                                adv_max_samples = gr.Number(value=None, precision=0, label="Max samples (optional)")
                                adv_min_length = gr.Number(value=10, precision=0, label="Min length")
                                adv_max_length = gr.Number(value=None, precision=0, label="Max length (optional)")

                        with gr.Accordion("Training", open=True):
                            with gr.Row():
                                adv_num_train_epochs = gr.Number(value=1.0, precision=2, label="Epochs")
                                adv_batch_size = gr.Number(value=4, precision=0, label="Batch size")
                                adv_gradient_accumulation_steps = gr.Number(value=4, precision=0, label="Grad accumulation")
                            with gr.Row():
                                adv_learning_rate = gr.Number(value=2e-4, precision=6, label="Learning rate")
                                adv_min_lr_num = gr.Number(value=2e-5, precision=6, label="Min LR")
                                adv_weight_decay = gr.Number(value=0.01, precision=6, label="Weight decay")
                                adv_warmup_ratio = gr.Number(value=0.03, precision=3, label="Warmup ratio")
                            adv_max_seq_length = gr.Number(value=2048, precision=0, label="Max seq length")

                        with gr.Accordion("LoRA & Quantization", open=False):
                            with gr.Row():
                                adv_lora_r = gr.Number(value=16, precision=0, label="LoRA r")
                                adv_lora_alpha = gr.Number(value=32, precision=0, label="LoRA alpha")
                                adv_lora_dropout = gr.Number(value=0.05, precision=3, label="LoRA dropout")
                            with gr.Row():
                                adv_mixed_precision = gr.Dropdown(choices=["bf16", "fp16", "fp32"], value="bf16", label="Mixed precision")
                                adv_num_workers = gr.Number(value=4, precision=0, label="Data workers")
                                adv_quantization_type = gr.Dropdown(choices=["mxfp4", "bnb4", "none"], value="mxfp4", label="Quantization")
                            adv_max_grad_norm = gr.Number(value=1.0, precision=3, label="Max grad norm")

                        with gr.Accordion("Eval & Logging", open=False):
                            with gr.Row():
                                adv_logging_steps = gr.Number(value=10, precision=0, label="Logging steps")
                                adv_eval_steps = gr.Number(value=100, precision=0, label="Eval steps")
                                adv_save_steps = gr.Number(value=500, precision=0, label="Save steps")

                        with gr.Accordion("Scheduler (GPT-OSS only)", open=False):
                            scheduler_override = gr.Dropdown(
                                choices=[c for c in SCHEDULER_CHOICES if c is not None],
                                value=None,
                                allow_custom_value=True,
                                label="Scheduler override",
                            )
                            with gr.Row():
                                min_lr = gr.Number(value=None, precision=6, label="min_lr (cosine_with_min_lr)")
                                min_lr_rate = gr.Number(value=None, precision=6, label="min_lr_rate (cosine_with_min_lr)")

                    # --- GPT-OSS Medical o1 SFT controls ---
                    gpt_oss_medical_group = gr.Group(visible=False)
                    with gpt_oss_medical_group:
                        gr.Markdown("Build a Medical o1 SFT configuration (dataset fixed to FreedomIntelligence/medical-o1-reasoning-SFT)")
                        with gr.Accordion("Dataset", open=True):
                            adv_med_dataset_config = gr.Textbox(value="default", label="Dataset config (subset)")
                        with gr.Accordion("Context (optional)", open=False):
                            with gr.Row():
                                adv_med_system_message = gr.Textbox(value="", label="System message")
                                adv_med_developer_message = gr.Textbox(value="", label="Developer message")
                        with gr.Accordion("Training", open=True):
                            with gr.Row():
                                adv_med_num_train_epochs = gr.Number(value=1.0, precision=2, label="Epochs")
                                adv_med_batch_size = gr.Number(value=4, precision=0, label="Batch size")
                                adv_med_gradient_accumulation_steps = gr.Number(value=4, precision=0, label="Grad accumulation")
                            with gr.Row():
                                adv_med_learning_rate = gr.Number(value=2e-4, precision=6, label="Learning rate")
                                adv_med_max_seq_length = gr.Number(value=2048, precision=0, label="Max seq length")

                smollm3_advanced_group = gr.Group(visible=False)
                with smollm3_advanced_group:
                    gr.Markdown("Advanced configuration for SmolLM3")
                    adv_sm_mode = gr.Radio(
                        choices=["custom", "long_context"],
                        value="custom",
                        label="Advanced mode",
                    )
                    # --- SmolLM3 Custom ---
                    sm_custom_group = gr.Group(visible=True)
                    with sm_custom_group:
                        with gr.Accordion("Dataset", open=True):
                            adv_sm_model_name = gr.Textbox(value="HuggingFaceTB/SmolLM3-3B", label="Model name")
                            adv_sm_dataset_name = gr.Textbox(value="", label="Dataset name (optional)")
                            with gr.Row():
                                adv_sm_input_field = gr.Textbox(value="prompt", label="Input field")
                                adv_sm_target_field = gr.Textbox(value="completion", label="Target field")
                            with gr.Row():
                                adv_sm_filter_bad_entries = gr.Checkbox(value=False, label="Filter bad entries")
                                adv_sm_sample_size = gr.Number(value=None, precision=0, label="Sample size (optional)")
                                adv_sm_sample_seed = gr.Number(value=42, precision=0, label="Sample seed")
                        with gr.Accordion("Training", open=True):
                            with gr.Row():
                                adv_sm_max_seq_length = gr.Number(value=4096, precision=0, label="Max seq length")
                                adv_sm_batch_size = gr.Number(value=2, precision=0, label="Batch size")
                                adv_sm_gas = gr.Number(value=8, precision=0, label="Grad accumulation")
                                adv_sm_learning_rate = gr.Number(value=5e-6, precision=6, label="Learning rate")
                            with gr.Row():
                                adv_sm_save_steps = gr.Number(value=500, precision=0, label="Save steps")
                                adv_sm_eval_steps = gr.Number(value=100, precision=0, label="Eval steps")
                                adv_sm_logging_steps = gr.Number(value=10, precision=0, label="Logging steps")

                    # --- SmolLM3 Long-Context ---
                    sm_long_group = gr.Group(visible=False)
                    with sm_long_group:
                        gr.Markdown("Generate a Long-Context SmolLM3 config")
                        with gr.Accordion("Dataset", open=True):
                            adv_sm_lc_model_name = gr.Textbox(value="HuggingFaceTB/SmolLM3-3B", label="Model name")
                            adv_sm_lc_dataset_name = gr.Textbox(value="", label="Dataset name (optional)")
                            with gr.Row():
                                adv_sm_lc_input_field = gr.Textbox(value="prompt", label="Input field")
                                adv_sm_lc_target_field = gr.Textbox(value="completion", label="Target field")
                            with gr.Row():
                                adv_sm_lc_filter_bad_entries = gr.Checkbox(value=False, label="Filter bad entries")
                                adv_sm_lc_sample_size = gr.Number(value=None, precision=0, label="Sample size (optional)")
                                adv_sm_lc_sample_seed = gr.Number(value=42, precision=0, label="Sample seed")
                        with gr.Accordion("Training", open=True):
                            with gr.Row():
                                adv_sm_lc_max_seq_length = gr.Number(value=131072, precision=0, label="Max seq length (up to 131072)")
                                adv_sm_lc_batch_size = gr.Number(value=1, precision=0, label="Batch size")
                                adv_sm_lc_gas = gr.Number(value=8, precision=0, label="Grad accumulation")
                                adv_sm_lc_learning_rate = gr.Number(value=1e-5, precision=6, label="Learning rate")
                            with gr.Row():
                                adv_sm_lc_warmup_steps = gr.Number(value=200, precision=0, label="Warmup steps")
                                adv_sm_lc_max_iters = gr.Number(value=500, precision=0, label="Max iters")
                            with gr.Row():
                                adv_sm_lc_save_steps = gr.Number(value=100, precision=0, label="Save steps")
                                adv_sm_lc_eval_steps = gr.Number(value=50, precision=0, label="Eval steps")
                                adv_sm_lc_logging_steps = gr.Number(value=10, precision=0, label="Logging steps")
                        with gr.Accordion("Chat Template", open=False):
                            with gr.Row():
                                adv_sm_lc_use_chat_template = gr.Checkbox(value=True, label="Use chat template")
                                adv_sm_lc_no_think_system_message = gr.Checkbox(value=True, label="No-think system message")

                def _toggle_sm_mode(mode: str):
                    return (
                        gr.update(visible=mode == "custom"),
                        gr.update(visible=mode == "long_context"),
                    )

                adv_sm_mode.change(
                    _toggle_sm_mode,
                    inputs=[adv_sm_mode],
                    outputs=[sm_custom_group, sm_long_group],
                )

                def _toggle_advanced(enable: bool, family_val: str):
                    return (
                        gr.update(visible=enable and family_val == "GPT-OSS"),
                        gr.update(visible=enable and family_val == "SmolLM3"),
                    )

                advanced_enabled.change(
                    _toggle_advanced,
                    inputs=[advanced_enabled, model_family],
                    outputs=[gpt_oss_advanced_group, smollm3_advanced_group],
                )

                # Toggle between GPT-OSS Custom and Medical modes
                def _toggle_gpt_oss_mode(mode: str):
                    return (
                        gr.update(visible=mode == "custom"),
                        gr.update(visible=mode == "medical_o1_sft"),
                    )

                adv_gpt_mode.change(
                    _toggle_gpt_oss_mode,
                    inputs=[adv_gpt_mode],
                    outputs=[gpt_oss_custom_group, gpt_oss_medical_group],
                )

    # Final action & logs
    start_btn = gr.Button("Run Pipeline", variant="primary")
    logs = gr.Textbox(value="", label="Logs", lines=20)

    # --- Events ---------------------------------------------------------------------
    model_family.change(
        on_family_change,
        inputs=model_family,
        outputs=[
            config_choice,
            experiment_name,
            repo_short,
            model_description,
            trackio_space_name,
            training_info,
            dataset_choice,
            step2_group,
            step3_group,
            step4_group,
            gpt_oss_advanced_group,  # show advanced for GPT-OSS
            smollm3_advanced_group,  # show advanced for SmolLM3
        ],
    )

    trainer_type.change(on_trainer_selected, inputs=trainer_type, outputs=step3_group)

    monitoring_mode.change(
        on_monitoring_change,
        inputs=monitoring_mode,
        outputs=[step4_group, trackio_space_name, deploy_trackio_space, create_dataset_repo],
    )

    config_choice.change(
        on_config_change,
        inputs=[model_family, config_choice],
        outputs=[
            training_info,
            dataset_choice,
            # Advanced (GPT-OSS) outputs
            adv_dataset_name,
            adv_dataset_split,
            adv_dataset_format,
            adv_input_field,
            adv_target_field,
            adv_system_message,
            adv_developer_message,
            adv_model_identity,
            adv_max_samples,
            adv_min_length,
            adv_max_length,
            adv_num_train_epochs,
            adv_batch_size,
            adv_gradient_accumulation_steps,
            adv_learning_rate,
            adv_min_lr_num,
            adv_weight_decay,
            adv_warmup_ratio,
            adv_max_seq_length,
            adv_lora_r,
            adv_lora_alpha,
            adv_lora_dropout,
            adv_mixed_precision,
            adv_num_workers,
            adv_quantization_type,
            adv_max_grad_norm,
            adv_logging_steps,
            adv_eval_steps,
            adv_save_steps,
            # GPT-OSS Medical o1 SFT outputs (prefill defaults)
            adv_med_dataset_config,
            adv_med_system_message,
            adv_med_developer_message,
            adv_med_num_train_epochs,
            adv_med_batch_size,
            adv_med_gradient_accumulation_steps,
            adv_med_learning_rate,
            adv_med_max_seq_length,
            # Advanced (SmolLM3)
            adv_sm_model_name,
            adv_sm_dataset_name,
            adv_sm_input_field,
            adv_sm_target_field,
            adv_sm_filter_bad_entries,
            adv_sm_sample_size,
            adv_sm_sample_seed,
            adv_sm_max_seq_length,
            adv_sm_batch_size,
            adv_sm_gas,
            adv_sm_learning_rate,
            adv_sm_save_steps,
            adv_sm_eval_steps,
            adv_sm_logging_steps,
        ],
    )

    # Keep Advanced dataset fields in sync when user selects a different dataset
    def _sync_dataset_fields(ds_value: Optional[str]):
        ds_text = ds_value or ""
        return ds_text, ds_text

    dataset_choice.change(
        _sync_dataset_fields,
        inputs=[dataset_choice],
        outputs=[adv_dataset_name, adv_sm_dataset_name],
    )

    def _start_with_overrides(
        model_family_v,
        config_choice_v,
        trainer_type_v,
        monitoring_mode_v,
        experiment_name_v,
        repo_short_v,
        author_name_v,
        model_description_v,
        trackio_space_name_v,
        deploy_trackio_space_v,
        create_dataset_repo_v,
        push_to_hub_v,
        switch_to_read_after_v,
        scheduler_override_v,
        min_lr_v,
        min_lr_rate_v,
        advanced_enabled_v,
        adv_gpt_mode_v,
        # GPT-OSS advanced
        adv_dataset_name_v,
        adv_dataset_split_v,
        adv_dataset_format_v,
        adv_input_field_v,
        adv_target_field_v,
        adv_system_message_v,
        adv_developer_message_v,
        adv_model_identity_v,
        adv_max_samples_v,
        adv_min_length_v,
        adv_max_length_v,
        adv_num_train_epochs_v,
        adv_batch_size_v,
        adv_gas_v,
        adv_lr_v,
        adv_min_lr_num_v,
        adv_wd_v,
        adv_warmup_ratio_v,
        adv_max_seq_length_v,
        adv_lora_r_v,
        adv_lora_alpha_v,
        adv_lora_dropout_v,
        adv_mixed_precision_v,
        adv_num_workers_v,
        adv_quantization_type_v,
        adv_max_grad_norm_v,
        adv_logging_steps_v,
        adv_eval_steps_v,
        adv_save_steps_v,
        # GPT-OSS Medical o1 SFT
        adv_med_dataset_config_v,
        adv_med_system_message_v,
        adv_med_developer_message_v,
        adv_med_num_train_epochs_v,
        adv_med_batch_size_v,
        adv_med_gradient_accumulation_steps_v,
        adv_med_learning_rate_v,
        adv_med_max_seq_length_v,
        # SmolLM3 advanced
        adv_sm_mode_v,
        adv_sm_model_name_v,
        adv_sm_dataset_name_v,
        adv_sm_input_field_v,
        adv_sm_target_field_v,
        adv_sm_filter_bad_entries_v,
        adv_sm_sample_size_v,
        adv_sm_sample_seed_v,
        adv_sm_max_seq_length_v,
        adv_sm_batch_size_v,
        adv_sm_gas_v,
        adv_sm_learning_rate_v,
        adv_sm_save_steps_v,
        adv_sm_eval_steps_v,
        adv_sm_logging_steps_v,
        # SmolLM3 long context
        adv_sm_lc_model_name_v,
        adv_sm_lc_dataset_name_v,
        adv_sm_lc_input_field_v,
        adv_sm_lc_target_field_v,
        adv_sm_lc_filter_bad_entries_v,
        adv_sm_lc_sample_size_v,
        adv_sm_lc_sample_seed_v,
        adv_sm_lc_max_seq_length_v,
        adv_sm_lc_batch_size_v,
        adv_sm_lc_gas_v,
        adv_sm_lc_learning_rate_v,
        adv_sm_lc_warmup_steps_v,
        adv_sm_lc_max_iters_v,
        adv_sm_lc_save_steps_v,
        adv_sm_lc_eval_steps_v,
        adv_sm_lc_logging_steps_v,
        adv_sm_lc_use_chat_template_v,
        adv_sm_lc_no_think_system_message_v,
    ):
        # If advanced overrides enabled, generate a config file and pass its path
        override_path: Optional[str] = None
        if advanced_enabled_v:
            try:
                if model_family_v == "GPT-OSS":
                    if str(adv_gpt_mode_v) == "medical_o1_sft":
                        cfg_path = generate_medical_o1_config_file(
                            dataset_config=str(adv_med_dataset_config_v or "default"),
                            system_message=(str(adv_med_system_message_v) if adv_med_system_message_v else None),
                            developer_message=(str(adv_med_developer_message_v) if adv_med_developer_message_v else None),
                            num_train_epochs=float(adv_med_num_train_epochs_v or 1.0),
                            batch_size=int(adv_med_batch_size_v or 4),
                            gradient_accumulation_steps=int(adv_med_gradient_accumulation_steps_v or 4),
                            learning_rate=float(adv_med_learning_rate_v or 2e-4),
                            max_seq_length=int(adv_med_max_seq_length_v or 2048),
                        )
                    else:
                        cfg_path = generate_gpt_oss_custom_config_file(
                            dataset_name=str(adv_dataset_name_v or ""),
                            dataset_split=str(adv_dataset_split_v or "train"),
                            dataset_format=str(adv_dataset_format_v or "openhermes_fr"),
                            input_field=str(adv_input_field_v or "prompt"),
                            target_field=(str(adv_target_field_v) if adv_target_field_v else None),
                            system_message=(str(adv_system_message_v) if adv_system_message_v else None),
                            developer_message=(str(adv_developer_message_v) if adv_developer_message_v else None),
                            model_identity=(str(adv_model_identity_v) if adv_model_identity_v else None),
                            max_samples=(int(adv_max_samples_v) if adv_max_samples_v else None),
                            min_length=int(adv_min_length_v or 10),
                            max_length=(int(adv_max_length_v) if adv_max_length_v else None),
                            num_train_epochs=float(adv_num_train_epochs_v or 1.0),
                            batch_size=int(adv_batch_size_v or 4),
                            gradient_accumulation_steps=int(adv_gas_v or 4),
                            learning_rate=float(adv_lr_v or 2e-4),
                            min_lr=float(adv_min_lr_num_v or 2e-5),
                            weight_decay=float(adv_wd_v or 0.01),
                            warmup_ratio=float(adv_warmup_ratio_v or 0.03),
                            max_seq_length=int(adv_max_seq_length_v or 2048),
                            lora_r=int(adv_lora_r_v or 16),
                            lora_alpha=int(adv_lora_alpha_v or 32),
                            lora_dropout=float(adv_lora_dropout_v or 0.05),
                            mixed_precision=str(adv_mixed_precision_v or "bf16"),
                            num_workers=int(adv_num_workers_v or 4),
                            quantization_type=str(adv_quantization_type_v or "mxfp4"),
                            max_grad_norm=float(adv_max_grad_norm_v or 1.0),
                            logging_steps=int(adv_logging_steps_v or 10),
                            eval_steps=int(adv_eval_steps_v or 100),
                            save_steps=int(adv_save_steps_v or 500),
                        )
                else:
                    if str(adv_sm_mode_v) == "long_context":
                        cfg_path = generate_smollm3_long_context_config_file(
                            model_name=str(adv_sm_lc_model_name_v or "HuggingFaceTB/SmolLM3-3B"),
                            dataset_name=(str(adv_sm_lc_dataset_name_v) if adv_sm_lc_dataset_name_v else None),
                            input_field=str(adv_sm_lc_input_field_v or "prompt"),
                            target_field=str(adv_sm_lc_target_field_v or "completion"),
                            filter_bad_entries=bool(adv_sm_lc_filter_bad_entries_v),
                            sample_size=(int(adv_sm_lc_sample_size_v) if adv_sm_lc_sample_size_v else None),
                            sample_seed=int(adv_sm_lc_sample_seed_v or 42),
                            max_seq_length=int(adv_sm_lc_max_seq_length_v or 131072),
                            batch_size=int(adv_sm_lc_batch_size_v or 1),
                            gradient_accumulation_steps=int(adv_sm_lc_gas_v or 8),
                            learning_rate=float(adv_sm_lc_learning_rate_v or 1e-5),
                            warmup_steps=int(adv_sm_lc_warmup_steps_v or 200),
                            max_iters=int(adv_sm_lc_max_iters_v or 500),
                            save_steps=int(adv_sm_lc_save_steps_v or 100),
                            eval_steps=int(adv_sm_lc_eval_steps_v or 50),
                            logging_steps=int(adv_sm_lc_logging_steps_v or 10),
                            use_chat_template=bool(adv_sm_lc_use_chat_template_v),
                            no_think_system_message=bool(adv_sm_lc_no_think_system_message_v),
                            trainer_type=str(trainer_type_v).lower(),
                        )
                    else:
                        cfg_path = generate_smollm3_custom_config_file(
                            model_name=str(adv_sm_model_name_v or "HuggingFaceTB/SmolLM3-3B"),
                            dataset_name=(str(adv_sm_dataset_name_v) if adv_sm_dataset_name_v else None),
                            max_seq_length=int(adv_sm_max_seq_length_v or 4096),
                            batch_size=int(adv_sm_batch_size_v or 2),
                            gradient_accumulation_steps=int(adv_sm_gas_v or 8),
                            learning_rate=float(adv_sm_learning_rate_v or 5e-6),
                            save_steps=int(adv_sm_save_steps_v or 500),
                            eval_steps=int(adv_sm_eval_steps_v or 100),
                            logging_steps=int(adv_sm_logging_steps_v or 10),
                            filter_bad_entries=bool(adv_sm_filter_bad_entries_v),
                            input_field=str(adv_sm_input_field_v or "prompt"),
                            target_field=str(adv_sm_target_field_v or "completion"),
                            sample_size=(int(adv_sm_sample_size_v) if adv_sm_sample_size_v else None),
                            sample_seed=int(adv_sm_sample_seed_v or 42),
                            trainer_type=str(trainer_type_v).lower(),
                        )
                override_path = str(cfg_path)
            except Exception as e:
                # Surface error in logs via generator
                def _err_gen():
                    yield f"❌ Failed to generate advanced config: {e}"
                return _err_gen()

        def _gen():
            params = PipelineInputs(
                model_family=model_family_v,
                config_choice=config_choice_v,
                trainer_type=trainer_type_v,
                monitoring_mode=monitoring_mode_v,
                experiment_name=experiment_name_v,
                repo_short=repo_short_v,
                author_name=author_name_v,
                model_description=model_description_v,
                trackio_space_name=trackio_space_name_v or None,
                deploy_trackio_space=bool(deploy_trackio_space_v),
                create_dataset_repo=bool(create_dataset_repo_v),
                push_to_hub=bool(push_to_hub_v),
                switch_to_read_after=bool(switch_to_read_after_v),
                scheduler_override=(scheduler_override_v or None),
                min_lr=min_lr_v,
                min_lr_rate=min_lr_rate_v,
                override_config_path=override_path,
            )
            write_token = os.environ.get("HF_WRITE_TOKEN") or os.environ.get("HF_TOKEN")
            read_token = os.environ.get("HF_READ_TOKEN")
            yield f"HF_WRITE_TOKEN: {mask_token(write_token)}"
            yield f"HF_READ_TOKEN:  {mask_token(read_token)}"
            for line in run_pipeline(params):
                yield line
                time.sleep(0.01)
        return _gen()

    start_btn.click(
        _start_with_overrides,
        inputs=[
            model_family,
            config_choice,
            trainer_type,
            monitoring_mode,
            experiment_name,
            repo_short,
            author_name,
            model_description,
            trackio_space_name,
            deploy_trackio_space,
            create_dataset_repo,
            push_to_hub,
            switch_to_read_after,
            scheduler_override,
            min_lr,
            min_lr_rate,
            advanced_enabled,
            adv_gpt_mode,
            # GPT-OSS advanced
            adv_dataset_name,
            adv_dataset_split,
            adv_dataset_format,
            adv_input_field,
            adv_target_field,
            adv_system_message,
            adv_developer_message,
            adv_model_identity,
            adv_max_samples,
            adv_min_length,
            adv_max_length,
            adv_num_train_epochs,
            adv_batch_size,
            adv_gradient_accumulation_steps,
            adv_learning_rate,
            adv_min_lr_num,
            adv_weight_decay,
            adv_warmup_ratio,
            adv_max_seq_length,
            adv_lora_r,
            adv_lora_alpha,
            adv_lora_dropout,
            adv_mixed_precision,
            adv_num_workers,
            adv_quantization_type,
            adv_max_grad_norm,
            adv_logging_steps,
            adv_eval_steps,
            adv_save_steps,
            # GPT-OSS Medical o1 SFT
            adv_med_dataset_config,
            adv_med_system_message,
            adv_med_developer_message,
            adv_med_num_train_epochs,
            adv_med_batch_size,
            adv_med_gradient_accumulation_steps,
            adv_med_learning_rate,
            adv_med_max_seq_length,
            # SmolLM3 advanced
            adv_sm_mode,
            adv_sm_model_name,
            adv_sm_dataset_name,
            adv_sm_input_field,
            adv_sm_target_field,
            adv_sm_filter_bad_entries,
            adv_sm_sample_size,
            adv_sm_sample_seed,
            adv_sm_max_seq_length,
            adv_sm_batch_size,
            adv_sm_gas,
            adv_sm_learning_rate,
            adv_sm_save_steps,
            adv_sm_eval_steps,
            adv_sm_logging_steps,
            # SmolLM3 long context
            adv_sm_lc_model_name,
            adv_sm_lc_dataset_name,
            adv_sm_lc_input_field,
            adv_sm_lc_target_field,
            adv_sm_lc_filter_bad_entries,
            adv_sm_lc_sample_size,
            adv_sm_lc_sample_seed,
            adv_sm_lc_max_seq_length,
            adv_sm_lc_batch_size,
            adv_sm_lc_gas,
            adv_sm_lc_learning_rate,
            adv_sm_lc_warmup_steps,
            adv_sm_lc_max_iters,
            adv_sm_lc_save_steps,
            adv_sm_lc_eval_steps,
            adv_sm_lc_logging_steps,
            adv_sm_lc_use_chat_template,
            adv_sm_lc_no_think_system_message,
        ],
        outputs=[logs],
    )


if __name__ == "__main__":
    # Optional: allow setting server parameters via env
    server_port = int(os.environ.get("INTERFACE_PORT", "7860"))
    server_name = os.environ.get("INTERFACE_HOST", "0.0.0.0")
    demo.queue().launch(server_name=server_name, server_port=server_port, mcp_server=True)