File size: 6,506 Bytes
5fe83da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e092247
5fe83da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe598e
 
 
 
5fe83da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32fca7d
 
5fe83da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
SmolLM3 Training Configuration for OpenHermes-FR Dataset - A100 Large Scale
Optimized for A100 GPUs with large batch sizes and multiple passes on 800k+ datapoints
"""

import os
from dataclasses import dataclass
from typing import Optional
from config.train_smollm3 import SmolLM3Config

@dataclass
class SmolLM3ConfigOpenHermesFRA100Large(SmolLM3Config):
    """Configuration for SmolLM3 fine-tuning on OpenHermes-FR dataset - A100 Large Scale"""
    
    # Model configuration - optimized for A100
    model_name: str = "HuggingFaceTB/SmolLM3-3B"
    max_seq_length: int = 8192  # Increased for better context understanding
    use_flash_attention: bool = True
    use_gradient_checkpointing: bool = False  # Disabled for A100 efficiency
    
    # Training configuration - A100 optimized with large batch sizes
    batch_size: int = 8  # Large batch size for A100 (80GB VRAM)
    gradient_accumulation_steps: int = 16  # Effective batch size = 8 * 16 = 128
    learning_rate: float = 5e-6  # Lower LR for large effective batch size
    weight_decay: float = 0.01
    warmup_steps: int = 1000  # More warmup for large dataset
    max_iters: int = 8000  # Multiple passes on 800k dataset
    eval_interval: int = 500  # Less frequent evaluation
    log_interval: int = 25  # Less frequent logging
    save_interval: int = 1000  # Less frequent saving
    
    # Optimizer configuration - optimized for large batches
    optimizer: str = "adamw_torch"
    beta1: float = 0.9
    beta2: float = 0.999  # Higher beta2 for stability with large batches
    eps: float = 1e-8
    
    # Scheduler configuration - longer training
    scheduler: str = "cosine"
    min_lr: float = 5e-7  # Lower min LR
    
    # Mixed precision - A100 optimized
    fp16: bool = False  # Use bf16 for A100
    bf16: bool = True  # Better for A100
    
    # DDP configuration
    ddp_backend: str = "nccl"
    ddp_find_unused_parameters: bool = False
    
    # Logging and saving - optimized for long training
    save_steps: int = 1000
    eval_steps: int = 500
    logging_steps: int = 25
    save_total_limit: Optional[int] = 5  # Keep more checkpoints
    
    # Evaluation
    eval_strategy: str = "steps"
    metric_for_best_model: str = "eval_loss"
    greater_is_better: bool = False
    load_best_model_at_end: bool = True
    
    # OpenHermes-FR Dataset configuration
    dataset_name: str = "legmlai/openhermes-fr"
    dataset_split: str = "train"
    input_field: str = "prompt"
    target_field: str = "accepted_completion"
    filter_bad_entries: bool = True
    bad_entry_field: str = "bad_entry"
    
    # Data configuration (not used for HF datasets but kept for compatibility)
    data_dir: str = None
    train_file: str = None
    validation_file: Optional[str] = None
    test_file: Optional[str] = None
    
    # Chat template configuration
    use_chat_template: bool = True
    chat_template_kwargs: dict = None
    
    # Trackio monitoring configuration
    enable_tracking: bool = True
    trackio_url: Optional[str] = None
    trackio_token: Optional[str] = None
    log_artifacts: bool = True
    log_metrics: bool = True
    log_config: bool = True
    experiment_name: Optional[str] = None
    # HF Datasets configuration
    hf_token: Optional[str] = None
    dataset_repo: Optional[str] = None

    
    # Additional A100 optimizations
    dataloader_num_workers: int = 8  # More workers for faster data loading
    dataloader_pin_memory: bool = True
    dataloader_prefetch_factor: int = 2
    
    # Memory optimizations
    max_grad_norm: float = 1.0  # Gradient clipping
    group_by_length: bool = True  # Group similar length sequences
    
    # Training duration calculations
    # With 800k datapoints and effective batch size of 128:
    # Steps per epoch = 800,000 / 128 = 6,250 steps
    # For 3 passes: 6,250 * 3 = 18,750 steps
    # For 5 passes: 6,250 * 5 = 31,250 steps
    # Current max_iters = 8,000 (about 1.3 passes)
    
    def __post_init__(self):
        if self.chat_template_kwargs is None:
            self.chat_template_kwargs = {
                "add_generation_prompt": True,
                "no_think_system_message": True  # Set to True to add /no_think tag
            }
        
        # Validate configuration
        if self.fp16 and self.bf16:
            raise ValueError("Cannot use both fp16 and bf16")
        
        if self.max_seq_length > 131072:  # 128k limit
            raise ValueError("max_seq_length cannot exceed 131072")
        
        # Calculate training statistics
        effective_batch_size = self.batch_size * self.gradient_accumulation_steps
        steps_per_epoch = 800000 // effective_batch_size  # Approximate for 800k dataset
        epochs_for_max_iters = self.max_iters / steps_per_epoch
        
        print(f"=== A100 Large Scale Training Configuration ===")
        print(f"Effective batch size: {effective_batch_size}")
        print(f"Steps per epoch: ~{steps_per_epoch}")
        print(f"Training for ~{epochs_for_max_iters:.1f} epochs")
        print(f"Total training steps: {self.max_iters}")
        print(f"Learning rate: {self.learning_rate}")
        print(f"Mixed precision: {'bf16' if self.bf16 else 'fp16'}")
        print(f"Max sequence length: {self.max_seq_length}")
        print(f"Gradient checkpointing: {self.use_gradient_checkpointing}")
        print("=" * 50)
        
        # Set default experiment name if not provided
        if self.experiment_name is None:
            self.experiment_name = "smollm3_openhermes_fr_a100_large"

def get_config(config_path: str) -> SmolLM3ConfigOpenHermesFRA100Large:
    """Load configuration from file or return default"""
    if os.path.exists(config_path):
        # Load from file if it exists
        import importlib.util
        spec = importlib.util.spec_from_file_location("config_module", config_path)
        config_module = importlib.util.module_from_spec(spec)
        spec.loader.exec_module(config_module)
        
        if hasattr(config_module, 'config'):
            return config_module.config
        else:
            # Try to find a config class
            for attr_name in dir(config_module):
                attr = getattr(config_module, attr_name)
                if isinstance(attr, SmolLM3ConfigOpenHermesFRA100Large):
                    return attr
    
    # Return default configuration
    return SmolLM3ConfigOpenHermesFRA100Large()

# Default configuration instance
config = SmolLM3ConfigOpenHermesFRA100Large()