File size: 50,697 Bytes
0b9efb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c37508
 
 
0b9efb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c37508
 
 
0b9efb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c37508
0b9efb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c37508
0b9efb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c37508
 
 
 
 
 
0b9efb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c37508
0b9efb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
"""
Trackio Deployment on Hugging Face Spaces
A Gradio interface for experiment tracking and monitoring
"""

import gradio as gr
import os
import json
import logging
from datetime import datetime
from typing import Dict, Any, Optional
import requests
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class TrackioSpace:
    """Trackio deployment for Hugging Face Spaces using HF Datasets"""
    
    def __init__(self, hf_token: Optional[str] = None, dataset_repo: Optional[str] = None):
        self.experiments = {}
        self.current_experiment = None
        
        # Get dataset repository and HF token from parameters or environment variables
        # Use dynamic default based on environment or fallback to generic default
        default_dataset_repo = os.environ.get('TRACKIO_DATASET_REPO', 'trackio-experiments')
        self.dataset_repo = dataset_repo or default_dataset_repo
        self.hf_token = hf_token or os.environ.get('HF_TOKEN')
        
        logger.info(f"πŸ”§ Using dataset repository: {self.dataset_repo}")
        
        if not self.hf_token:
            logger.warning("⚠️ HF_TOKEN not found. Some features may not work.")
        
        self._load_experiments()
        
    def _load_experiments(self):
        """Load experiments from HF Dataset"""
        try:
            if self.hf_token:
                from datasets import load_dataset
                
                # Try to load the dataset
                try:
                    dataset = load_dataset(self.dataset_repo, token=self.hf_token)
                    logger.info(f"βœ… Loaded experiments from {self.dataset_repo}")
                    
                    # Convert dataset to experiments dict
                    self.experiments = {}
                    if 'train' in dataset:
                        for row in dataset['train']:
                            exp_id = row.get('experiment_id')
                            if exp_id:
                                self.experiments[exp_id] = {
                                    'id': exp_id,
                                    'name': row.get('name', ''),
                                    'description': row.get('description', ''),
                                    'created_at': row.get('created_at', ''),
                                    'status': row.get('status', 'running'),
                                    'metrics': json.loads(row.get('metrics', '[]')),
                                    'parameters': json.loads(row.get('parameters', '{}')),
                                    'artifacts': json.loads(row.get('artifacts', '[]')),
                                    'logs': json.loads(row.get('logs', '[]'))
                                }
                    
                    logger.info(f"πŸ“Š Loaded {len(self.experiments)} experiments from dataset")
                    
                except Exception as e:
                    logger.warning(f"Failed to load from dataset: {e}")
                    # Fall back to backup data
                    self._load_backup_experiments()
            else:
                # No HF token, use backup data
                self._load_backup_experiments()
                
        except Exception as e:
            logger.error(f"Failed to load experiments: {e}")
            self._load_backup_experiments()
    
    def _load_backup_experiments(self):
        """Load backup experiments when dataset is not available"""
        logger.info("πŸ”„ Loading backup experiments...")
        
        # Get dynamic trackio URL from environment or use a placeholder
        trackio_url = os.environ.get('TRACKIO_URL', 'https://your-trackio-space.hf.space')
        
        backup_experiments = {
            'exp_20250720_130853': {
                'id': 'exp_20250720_130853',
                'name': 'petite-elle-l-aime-3',
                'description': 'SmolLM3 fine-tuning experiment',
                'created_at': '2025-07-20T11:20:01.780908',
                'status': 'running',
                'metrics': [
                    {
                        'timestamp': '2025-07-20T11:20:01.780908',
                        'step': 25,
                        'metrics': {
                            'loss': 1.1659,
                            'grad_norm': 10.3125,
                            'learning_rate': 7e-08,
                            'num_tokens': 1642080.0,
                            'mean_token_accuracy': 0.75923578992486,
                            'epoch': 0.004851130919895701
                        }
                    },
                    {
                        'timestamp': '2025-07-20T11:26:39.042155',
                        'step': 50,
                        'metrics': {
                            'loss': 1.165,
                            'grad_norm': 10.75,
                            'learning_rate': 1.4291666666666667e-07,
                            'num_tokens': 3324682.0,
                            'mean_token_accuracy': 0.7577659255266189,
                            'epoch': 0.009702261839791402
                        }
                    },
                    {
                        'timestamp': '2025-07-20T11:33:16.203045',
                        'step': 75,
                        'metrics': {
                            'loss': 1.1639,
                            'grad_norm': 10.6875,
                            'learning_rate': 2.1583333333333334e-07,
                            'num_tokens': 4987941.0,
                            'mean_token_accuracy': 0.7581205774843692,
                            'epoch': 0.014553392759687101
                        }
                    },
                    {
                        'timestamp': '2025-07-20T11:39:53.453917',
                        'step': 100,
                        'metrics': {
                            'loss': 1.1528,
                            'grad_norm': 10.75,
                            'learning_rate': 2.8875e-07,
                            'num_tokens': 6630190.0,
                            'mean_token_accuracy': 0.7614579878747463,
                            'epoch': 0.019404523679582803
                        }
                    }
                ],
                'parameters': {
                    'model_name': 'HuggingFaceTB/SmolLM3-3B',
                    'max_seq_length': 12288,
                    'use_flash_attention': True,
                    'use_gradient_checkpointing': False,
                    'batch_size': 8,
                    'gradient_accumulation_steps': 16,
                    'learning_rate': 3.5e-06,
                    'weight_decay': 0.01,
                    'warmup_steps': 1200,
                    'max_iters': 18000,
                    'eval_interval': 1000,
                    'log_interval': 25,
                    'save_interval': 2000,
                    'optimizer': 'adamw_torch',
                    'beta1': 0.9,
                    'beta2': 0.999,
                    'eps': 1e-08,
                    'scheduler': 'cosine',
                    'min_lr': 3.5e-07,
                    'fp16': False,
                    'bf16': True,
                    'ddp_backend': 'nccl',
                    'ddp_find_unused_parameters': False,
                    'save_steps': 2000,
                    'eval_steps': 1000,
                    'logging_steps': 25,
                    'save_total_limit': 5,
                    'eval_strategy': 'steps',
                    'metric_for_best_model': 'eval_loss',
                    'greater_is_better': False,
                    'load_best_model_at_end': True,
                    'data_dir': None,
                    'train_file': None,
                    'validation_file': None,
                    'test_file': None,
                    'use_chat_template': True,
                    'chat_template_kwargs': {'add_generation_prompt': True, 'no_think_system_message': True},
                    'enable_tracking': True,
                    'trackio_url': trackio_url,
                    'trackio_token': None,
                    'log_artifacts': True,
                    'log_metrics': True,
                    'log_config': True,
                    'experiment_name': 'petite-elle-l-aime-3',
                    'dataset_name': 'legmlai/openhermes-fr',
                    'dataset_split': 'train',
                    'input_field': 'prompt',
                    'target_field': 'accepted_completion',
                    'filter_bad_entries': True,
                    'bad_entry_field': 'bad_entry',
                    'packing': False,
                    'max_prompt_length': 12288,
                    'max_completion_length': 8192,
                    'truncation': True,
                    'dataloader_num_workers': 10,
                    'dataloader_pin_memory': True,
                    'dataloader_prefetch_factor': 3,
                    'max_grad_norm': 1.0,
                    'group_by_length': True
                },
                'artifacts': [],
                'logs': []
            },
            'exp_20250720_134319': {
                'id': 'exp_20250720_134319',
                'name': 'petite-elle-l-aime-3-1',
                'description': 'SmolLM3 fine-tuning experiment',
                'created_at': '2025-07-20T11:54:31.993219',
                'status': 'running',
                'metrics': [
                    {
                        'timestamp': '2025-07-20T11:54:31.993219',
                        'step': 25,
                        'metrics': {
                            'loss': 1.166,
                            'grad_norm': 10.375,
                            'learning_rate': 7e-08,
                            'num_tokens': 1642080.0,
                            'mean_token_accuracy': 0.7590958896279335,
                            'epoch': 0.004851130919895701
                        }
                    },
                    {
                        'timestamp': '2025-07-20T11:54:33.589487',
                        'step': 25,
                        'metrics': {
                            'gpu_0_memory_allocated': 17.202261447906494,
                            'gpu_0_memory_reserved': 75.474609375,
                            'gpu_0_utilization': 0,
                            'cpu_percent': 2.7,
                            'memory_percent': 10.1
                        }
                    }
                ],
                'parameters': {
                    'model_name': 'HuggingFaceTB/SmolLM3-3B',
                    'max_seq_length': 12288,
                    'use_flash_attention': True,
                    'use_gradient_checkpointing': False,
                    'batch_size': 8,
                    'gradient_accumulation_steps': 16,
                    'learning_rate': 3.5e-06,
                    'weight_decay': 0.01,
                    'warmup_steps': 1200,
                    'max_iters': 18000,
                    'eval_interval': 1000,
                    'log_interval': 25,
                    'save_interval': 2000,
                    'optimizer': 'adamw_torch',
                    'beta1': 0.9,
                    'beta2': 0.999,
                    'eps': 1e-08,
                    'scheduler': 'cosine',
                    'min_lr': 3.5e-07,
                    'fp16': False,
                    'bf16': True,
                    'ddp_backend': 'nccl',
                    'ddp_find_unused_parameters': False,
                    'save_steps': 2000,
                    'eval_steps': 1000,
                    'logging_steps': 25,
                    'save_total_limit': 5,
                    'eval_strategy': 'steps',
                    'metric_for_best_model': 'eval_loss',
                    'greater_is_better': False,
                    'load_best_model_at_end': True,
                    'data_dir': None,
                    'train_file': None,
                    'validation_file': None,
                    'test_file': None,
                    'use_chat_template': True,
                    'chat_template_kwargs': {'add_generation_prompt': True, 'no_think_system_message': True},
                    'enable_tracking': True,
                    'trackio_url': trackio_url,
                    'trackio_token': None,
                    'log_artifacts': True,
                    'log_metrics': True,
                    'log_config': True,
                    'experiment_name': 'petite-elle-l-aime-3-1',
                    'dataset_name': 'legmlai/openhermes-fr',
                    'dataset_split': 'train',
                    'input_field': 'prompt',
                    'target_field': 'accepted_completion',
                    'filter_bad_entries': True,
                    'bad_entry_field': 'bad_entry',
                    'packing': False,
                    'max_prompt_length': 12288,
                    'max_completion_length': 8192,
                    'truncation': True,
                    'dataloader_num_workers': 10,
                    'dataloader_pin_memory': True,
                    'dataloader_prefetch_factor': 3,
                    'max_grad_norm': 1.0,
                    'group_by_length': True
                },
                'artifacts': [],
                'logs': []
            }
        }
        
        self.experiments = backup_experiments
        self.current_experiment = 'exp_20250720_134319'
        logger.info(f"βœ… Loaded {len(backup_experiments)} backup experiments")
    
    def _save_experiments(self):
        """Save experiments to HF Dataset"""
        try:
            if self.hf_token:
                from datasets import Dataset
                from huggingface_hub import HfApi
                
                # Convert experiments to dataset format
                dataset_data = []
                for exp_id, exp_data in self.experiments.items():
                    dataset_data.append({
                        'experiment_id': exp_id,
                        'name': exp_data.get('name', ''),
                        'description': exp_data.get('description', ''),
                        'created_at': exp_data.get('created_at', ''),
                        'status': exp_data.get('status', 'running'),
                        'metrics': json.dumps(exp_data.get('metrics', [])),
                        'parameters': json.dumps(exp_data.get('parameters', {})),
                        'artifacts': json.dumps(exp_data.get('artifacts', [])),
                        'logs': json.dumps(exp_data.get('logs', [])),
                        'last_updated': datetime.now().isoformat()
                    })
                
                # Create dataset
                dataset = Dataset.from_list(dataset_data)
                
                # Push to HF Hub
                api = HfApi(token=self.hf_token)
                dataset.push_to_hub(
                    self.dataset_repo,
                    token=self.hf_token,
                    private=True  # Make it private for security
                )
                
                logger.info(f"βœ… Saved {len(dataset_data)} experiments to {self.dataset_repo}")
                
            else:
                logger.warning("⚠️ No HF_TOKEN available, experiments not saved to dataset")
                
        except Exception as e:
            logger.error(f"Failed to save experiments to dataset: {e}")
            # Fall back to local file for backup
            try:
                data = {
                    'experiments': self.experiments,
                    'current_experiment': self.current_experiment,
                    'last_updated': datetime.now().isoformat()
                }
                with open("trackio_experiments_backup.json", 'w') as f:
                    json.dump(data, f, indent=2, default=str)
                logger.info("βœ… Saved backup to local file")
            except Exception as backup_e:
                logger.error(f"Failed to save backup: {backup_e}")
    
    def create_experiment(self, name: str, description: str = "") -> Dict[str, Any]:
        """Create a new experiment"""
        experiment_id = f"exp_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
        
        experiment = {
            'id': experiment_id,
            'name': name,
            'description': description,
            'created_at': datetime.now().isoformat(),
            'status': 'running',
            'metrics': [],
            'parameters': {},
            'artifacts': [],
            'logs': []
        }
        
        self.experiments[experiment_id] = experiment
        self.current_experiment = experiment_id
        self._save_experiments()
        
        logger.info(f"Created experiment: {experiment_id} - {name}")
        return experiment
    
    def log_metrics(self, experiment_id: str, metrics: Dict[str, Any], step: Optional[int] = None):
        """Log metrics for an experiment"""
        if experiment_id not in self.experiments:
            raise ValueError(f"Experiment {experiment_id} not found")
        
        metric_entry = {
            'timestamp': datetime.now().isoformat(),
            'step': step,
            'metrics': metrics
        }
        
        self.experiments[experiment_id]['metrics'].append(metric_entry)
        self._save_experiments()
        logger.info(f"Logged metrics for experiment {experiment_id}: {metrics}")
    
    def log_parameters(self, experiment_id: str, parameters: Dict[str, Any]):
        """Log parameters for an experiment"""
        if experiment_id not in self.experiments:
            raise ValueError(f"Experiment {experiment_id} not found")
        
        self.experiments[experiment_id]['parameters'].update(parameters)
        self._save_experiments()
        logger.info(f"Logged parameters for experiment {experiment_id}: {parameters}")
    
    def log_artifact(self, experiment_id: str, artifact_name: str, artifact_data: str):
        """Log an artifact for an experiment"""
        if experiment_id not in self.experiments:
            raise ValueError(f"Experiment {experiment_id} not found")
        
        artifact_entry = {
            'name': artifact_name,
            'timestamp': datetime.now().isoformat(),
            'data': artifact_data
        }
        
        self.experiments[experiment_id]['artifacts'].append(artifact_entry)
        self._save_experiments()
        logger.info(f"Logged artifact for experiment {experiment_id}: {artifact_name}")
    
    def get_experiment(self, experiment_id: str) -> Optional[Dict[str, Any]]:
        """Get experiment details"""
        return self.experiments.get(experiment_id)
    
    def list_experiments(self) -> Dict[str, Any]:
        """List all experiments"""
        return {
            'experiments': list(self.experiments.keys()),
            'current_experiment': self.current_experiment,
            'total_experiments': len(self.experiments)
        }
    
    def update_experiment_status(self, experiment_id: str, status: str):
        """Update experiment status"""
        if experiment_id in self.experiments:
            self.experiments[experiment_id]['status'] = status
            self._save_experiments()
            logger.info(f"Updated experiment {experiment_id} status to {status}")
    
    def get_metrics_dataframe(self, experiment_id: str) -> pd.DataFrame:
        """Get metrics as a pandas DataFrame for plotting"""
        if experiment_id not in self.experiments:
            return pd.DataFrame()
        
        experiment = self.experiments[experiment_id]
        if not experiment['metrics']:
            return pd.DataFrame()
        
        # Convert metrics to DataFrame
        data = []
        for metric_entry in experiment['metrics']:
            step = metric_entry.get('step', 0)
            timestamp = metric_entry.get('timestamp', '')
            metrics = metric_entry.get('metrics', {})
            
            row = {'step': step, 'timestamp': timestamp}
            row.update(metrics)
            data.append(row)
        
        return pd.DataFrame(data)

# Global instance
trackio_space = TrackioSpace()

def update_trackio_config(hf_token: str, dataset_repo: str) -> str:
    """Update TrackioSpace configuration with new HF token and dataset repository"""
    global trackio_space
    
    try:
        # Create new instance with updated configuration
        trackio_space = TrackioSpace(hf_token=hf_token if hf_token.strip() else None, 
                                   dataset_repo=dataset_repo if dataset_repo.strip() else None)
        
        # Reload experiments with new configuration
        trackio_space._load_experiments()
        
        return f"βœ… Configuration updated successfully!\nπŸ“Š Dataset: {trackio_space.dataset_repo}\nπŸ”‘ HF Token: {'Set' if trackio_space.hf_token else 'Not set'}\nπŸ“ˆ Loaded {len(trackio_space.experiments)} experiments"
        
    except Exception as e:
        return f"❌ Failed to update configuration: {str(e)}"

def test_dataset_connection(hf_token: str, dataset_repo: str) -> str:
    """Test connection to HF Dataset repository"""
    try:
        if not hf_token.strip():
            return "❌ Please provide a Hugging Face token"
        
        if not dataset_repo.strip():
            return "❌ Please provide a dataset repository"
        
        from datasets import load_dataset
        
        # Test loading the dataset
        dataset = load_dataset(dataset_repo, token=hf_token)
        
        # Count experiments
        experiment_count = len(dataset['train']) if 'train' in dataset else 0
        
        return f"βœ… Connection successful!\nπŸ“Š Dataset: {dataset_repo}\nπŸ“ˆ Found {experiment_count} experiments\nπŸ”— Dataset URL: https://huggingface.co/datasets/{dataset_repo}"
        
    except Exception as e:
        return f"❌ Connection failed: {str(e)}\n\nπŸ’‘ Troubleshooting:\n1. Check your HF token is correct\n2. Verify the dataset repository exists\n3. Ensure your token has read access to the dataset"

def create_dataset_repository(hf_token: str, dataset_repo: str) -> str:
    """Create HF Dataset repository if it doesn't exist"""
    try:
        if not hf_token.strip():
            return "❌ Please provide a Hugging Face token"
        
        if not dataset_repo.strip():
            return "❌ Please provide a dataset repository"
        
        from datasets import Dataset
        from huggingface_hub import HfApi
        
        # Parse username and dataset name
        if '/' not in dataset_repo:
            return "❌ Dataset repository must be in format: username/dataset-name"
        
        username, dataset_name = dataset_repo.split('/', 1)
        
        # Create API client
        api = HfApi(token=hf_token)
        
        # Check if dataset exists
        try:
            api.dataset_info(dataset_repo)
            return f"βœ… Dataset {dataset_repo} already exists!"
        except:
            # Dataset doesn't exist, create it
            pass
        
        # Create empty dataset
        empty_dataset = Dataset.from_dict({
            'experiment_id': [],
            'name': [],
            'description': [],
            'created_at': [],
            'status': [],
            'metrics': [],
            'parameters': [],
            'artifacts': [],
            'logs': [],
            'last_updated': []
        })
        
        # Push to hub
        empty_dataset.push_to_hub(
            dataset_repo,
            token=hf_token,
            private=True
        )
        
        return f"βœ… Dataset {dataset_repo} created successfully!\nπŸ”— View at: https://huggingface.co/datasets/{dataset_repo}\nπŸ“Š Ready to store experiments"
        
    except Exception as e:
        return f"❌ Failed to create dataset: {str(e)}\n\nπŸ’‘ Troubleshooting:\n1. Check your HF token has write permissions\n2. Verify the username in the repository name\n3. Ensure the dataset name is valid"

# Initialize API client for remote data
api_client = None
try:
    from trackio_api_client import create_trackio_client
    api_client = create_trackio_client()
    if api_client:
        logger.info("βœ… API client initialized for remote data access")
    else:
        logger.warning("⚠️ Could not initialize API client, using local data only")
except ImportError:
    logger.warning("⚠️ API client not available, using local data only")

# Add Hugging Face Spaces compatibility
def is_huggingface_spaces():
    """Check if running on Hugging Face Spaces"""
    return os.environ.get('SPACE_ID') is not None

def get_persistent_data_path():
    """Get a persistent data path for Hugging Face Spaces"""
    if is_huggingface_spaces():
        # Use a path that might persist better on HF Spaces
        return "/tmp/trackio_experiments.json"
    else:
        return "trackio_experiments.json"

# Override the data file path for HF Spaces
if is_huggingface_spaces():
    logger.info("πŸš€ Running on Hugging Face Spaces - using persistent storage")
    trackio_space.data_file = get_persistent_data_path()

def get_remote_experiment_data(experiment_id: str) -> Dict[str, Any]:
    """Get experiment data from remote API"""
    if api_client is None:
        return None
    
    try:
        # Get experiment details from API
        details_result = api_client.get_experiment_details(experiment_id)
        if "success" in details_result:
            return {"remote": True, "data": details_result["data"]}
        else:
            logger.warning(f"Failed to get remote data for {experiment_id}: {details_result}")
            return None
    except Exception as e:
        logger.error(f"Error getting remote data: {e}")
        return None

def parse_remote_metrics_data(experiment_details: str) -> pd.DataFrame:
    """Parse metrics data from remote experiment details"""
    try:
        # Look for metrics in the experiment details
        lines = experiment_details.split('\n')
        metrics_data = []
        
        for line in lines:
            if 'Step:' in line and 'Metrics:' in line:
                # Extract step and metrics from the line
                try:
                    # Parse step number
                    step_part = line.split('Step:')[1].split('Metrics:')[0].strip()
                    step = int(step_part)
                    
                    # Parse metrics JSON
                    metrics_part = line.split('Metrics:')[1].strip()
                    metrics = json.loads(metrics_part)
                    
                    # Add timestamp
                    row = {'step': step, 'timestamp': datetime.now().isoformat()}
                    row.update(metrics)
                    metrics_data.append(row)
                    
                except (ValueError, json.JSONDecodeError) as e:
                    logger.warning(f"Failed to parse metrics line: {line} - {e}")
                    continue
        
        if metrics_data:
            return pd.DataFrame(metrics_data)
        else:
            return pd.DataFrame()
            
    except Exception as e:
        logger.error(f"Error parsing remote metrics: {e}")
        return pd.DataFrame()

def get_metrics_dataframe(experiment_id: str) -> pd.DataFrame:
    """Get metrics as a pandas DataFrame for plotting - tries remote first, then local"""
    # Try to get remote data first
    remote_data = get_remote_experiment_data(experiment_id)
    if remote_data:
        logger.info(f"Using remote data for {experiment_id}")
        # Parse the remote experiment details to extract metrics
        df = parse_remote_metrics_data(remote_data["data"])
        if not df.empty:
            logger.info(f"Found {len(df)} metrics entries from remote data")
            return df
        else:
            logger.warning(f"No metrics found in remote data for {experiment_id}")
    
    # Fall back to local data
    logger.info(f"Using local data for {experiment_id}")
    return trackio_space.get_metrics_dataframe(experiment_id)

def create_experiment_interface(name: str, description: str) -> str:
    """Create a new experiment"""
    try:
        experiment = trackio_space.create_experiment(name, description)
        return f"βœ… Experiment created successfully!\nID: {experiment['id']}\nName: {experiment['name']}\nStatus: {experiment['status']}"
    except Exception as e:
        return f"❌ Error creating experiment: {str(e)}"

def log_metrics_interface(experiment_id: str, metrics_json: str, step: str) -> str:
    """Log metrics for an experiment"""
    try:
        metrics = json.loads(metrics_json)
        step_int = int(step) if step else None
        trackio_space.log_metrics(experiment_id, metrics, step_int)
        return f"βœ… Metrics logged successfully for experiment {experiment_id}\nStep: {step_int}\nMetrics: {json.dumps(metrics, indent=2)}"
    except Exception as e:
        return f"❌ Error logging metrics: {str(e)}"

def log_parameters_interface(experiment_id: str, parameters_json: str) -> str:
    """Log parameters for an experiment"""
    try:
        parameters = json.loads(parameters_json)
        trackio_space.log_parameters(experiment_id, parameters)
        return f"βœ… Parameters logged successfully for experiment {experiment_id}\nParameters: {json.dumps(parameters, indent=2)}"
    except Exception as e:
        return f"❌ Error logging parameters: {str(e)}"

def get_experiment_details(experiment_id: str) -> str:
    """Get experiment details"""
    try:
        experiment = trackio_space.get_experiment(experiment_id)
        if experiment:
            # Format the output nicely
            details = f"""
πŸ“Š EXPERIMENT DETAILS
====================
ID: {experiment['id']}
Name: {experiment['name']}
Description: {experiment['description']}
Status: {experiment['status']}
Created: {experiment['created_at']}
πŸ“ˆ METRICS COUNT: {len(experiment['metrics'])}
πŸ“‹ PARAMETERS COUNT: {len(experiment['parameters'])}
πŸ“¦ ARTIFACTS COUNT: {len(experiment['artifacts'])}
πŸ”§ PARAMETERS:
{json.dumps(experiment['parameters'], indent=2)}
πŸ“Š LATEST METRICS:
"""
            if experiment['metrics']:
                latest_metrics = experiment['metrics'][-1]
                details += f"Step: {latest_metrics.get('step', 'N/A')}\n"
                details += f"Timestamp: {latest_metrics.get('timestamp', 'N/A')}\n"
                details += f"Metrics: {json.dumps(latest_metrics.get('metrics', {}), indent=2)}"
            else:
                details += "No metrics logged yet."
            
            return details
        else:
            return f"❌ Experiment {experiment_id} not found"
    except Exception as e:
        return f"❌ Error getting experiment details: {str(e)}"

def list_experiments_interface() -> str:
    """List all experiments with details"""
    try:
        experiments_info = trackio_space.list_experiments()
        experiments = trackio_space.experiments
        
        if not experiments:
            return "πŸ“­ No experiments found. Create one first!"
        
        result = f"πŸ“‹ EXPERIMENTS OVERVIEW\n{'='*50}\n"
        result += f"Total Experiments: {len(experiments)}\n"
        result += f"Current Experiment: {experiments_info['current_experiment']}\n\n"
        
        for exp_id, exp_data in experiments.items():
            status_emoji = {
                'running': '🟒',
                'completed': 'βœ…',
                'failed': '❌',
                'paused': '⏸️'
            }.get(exp_data['status'], '❓')
            
            result += f"{status_emoji} {exp_id}\n"
            result += f"   Name: {exp_data['name']}\n"
            result += f"   Status: {exp_data['status']}\n"
            result += f"   Created: {exp_data['created_at']}\n"
            result += f"   Metrics: {len(exp_data['metrics'])} entries\n"
            result += f"   Parameters: {len(exp_data['parameters'])} entries\n"
            result += f"   Artifacts: {len(exp_data['artifacts'])} entries\n\n"
        
        return result
    except Exception as e:
        return f"❌ Error listing experiments: {str(e)}"

def update_experiment_status_interface(experiment_id: str, status: str) -> str:
    """Update experiment status"""
    try:
        trackio_space.update_experiment_status(experiment_id, status)
        return f"βœ… Experiment {experiment_id} status updated to {status}"
    except Exception as e:
        return f"❌ Error updating experiment status: {str(e)}"

def create_metrics_plot(experiment_id: str, metric_name: str = "loss") -> go.Figure:
    """Create a plot for a specific metric"""
    try:
        df = get_metrics_dataframe(experiment_id)
        if df.empty:
            # Return empty plot
            fig = go.Figure()
            fig.add_annotation(
                text="No metrics data available",
                xref="paper", yref="paper",
                x=0.5, y=0.5, showarrow=False
            )
            return fig
        
        if metric_name not in df.columns:
            # Show available metrics
            available_metrics = [col for col in df.columns if col not in ['step', 'timestamp']]
            fig = go.Figure()
            fig.add_annotation(
                text=f"Available metrics: {', '.join(available_metrics)}",
                xref="paper", yref="paper",
                x=0.5, y=0.5, showarrow=False
            )
            return fig
        
        fig = px.line(df, x='step', y=metric_name, title=f'{metric_name} over time')
        fig.update_layout(
            xaxis_title="Training Step",
            yaxis_title=metric_name.title(),
            hovermode='x unified'
        )
        return fig
    
    except Exception as e:
        fig = go.Figure()
        fig.add_annotation(
            text=f"Error creating plot: {str(e)}",
            xref="paper", yref="paper",
            x=0.5, y=0.5, showarrow=False
        )
        return fig

def create_experiment_comparison(experiment_ids: str) -> go.Figure:
    """Compare multiple experiments"""
    try:
        exp_ids = [exp_id.strip() for exp_id in experiment_ids.split(',')]
        
        fig = go.Figure()
        
        for exp_id in exp_ids:
            df = get_metrics_dataframe(exp_id)
            if not df.empty and 'loss' in df.columns:
                fig.add_trace(go.Scatter(
                    x=df['step'],
                    y=df['loss'],
                    mode='lines+markers',
                    name=f"{exp_id} - Loss",
                    line=dict(width=2)
                ))
        
        fig.update_layout(
            title="Experiment Comparison - Loss",
            xaxis_title="Training Step",
            yaxis_title="Loss",
            hovermode='x unified'
        )
        
        return fig
    
    except Exception as e:
        fig = go.Figure()
        fig.add_annotation(
            text=f"Error creating comparison: {str(e)}",
            xref="paper", yref="paper",
            x=0.5, y=0.5, showarrow=False
        )
        return fig

def simulate_training_data(experiment_id: str):
    """Simulate training data for demonstration"""
    try:
        # Simulate some realistic training metrics
        for step in range(0, 1000, 50):
            # Simulate loss decreasing over time
            loss = 2.0 * np.exp(-step / 500) + 0.1 * np.random.random()
            accuracy = 0.3 + 0.6 * (1 - np.exp(-step / 300)) + 0.05 * np.random.random()
            lr = 3.5e-6 * (0.9 ** (step // 200))
            
            metrics = {
                "loss": round(loss, 4),
                "accuracy": round(accuracy, 4),
                "learning_rate": round(lr, 8),
                "gpu_memory": round(20 + 5 * np.random.random(), 2),
                "training_time": round(0.5 + 0.2 * np.random.random(), 3)
            }
            
            trackio_space.log_metrics(experiment_id, metrics, step)
        
        return f"βœ… Simulated training data for experiment {experiment_id}\nAdded 20 metric entries (steps 0-950)"
    except Exception as e:
        return f"❌ Error simulating data: {str(e)}"

def create_demo_experiment():
    """Create a demo experiment with training data"""
    try:
        # Create demo experiment
        experiment = trackio_space.create_experiment(
            "demo_smollm3_training",
            "Demo experiment with simulated training data"
        )
        
        experiment_id = experiment['id']
        
        # Add some demo parameters
        parameters = {
            "model_name": "HuggingFaceTB/SmolLM3-3B",
            "batch_size": 8,
            "learning_rate": 3.5e-6,
            "max_iters": 18000,
            "mixed_precision": "bf16",
            "dataset": "legmlai/openhermes-fr"
        }
        trackio_space.log_parameters(experiment_id, parameters)
        
        # Add demo training data
        simulate_training_data(experiment_id)
        
        return f"βœ… Demo experiment created: {experiment_id}\nYou can now test the visualization with this experiment!"
    except Exception as e:
        return f"❌ Error creating demo experiment: {str(e)}"

# Create Gradio interface
with gr.Blocks(title="Trackio - Experiment Tracking", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸš€ Trackio Experiment Tracking & Monitoring")
    gr.Markdown("Monitor and track your ML experiments with real-time visualization!")
    
    with gr.Tabs():
        # Configuration Tab
        with gr.Tab("βš™οΈ Configuration"):
            gr.Markdown("### Configure HF Datasets Connection")
            gr.Markdown("Set your Hugging Face token and dataset repository for persistent experiment storage.")
            
            with gr.Row():
                with gr.Column():
                    hf_token_input = gr.Textbox(
                        label="Hugging Face Token",
                        placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
                        type="password",
                        info="Your HF token for dataset access (optional - will use environment variable if not set)"
                    )
                    dataset_repo_input = gr.Textbox(
                        label="Dataset Repository",
                        placeholder="your-username/your-dataset-name",
                        value=os.environ.get('TRACKIO_DATASET_REPO', 'trackio-experiments'),
                        info="HF Dataset repository for experiment storage"
                    )
                    
                    with gr.Row():
                        update_config_btn = gr.Button("Update Configuration", variant="primary")
                        test_connection_btn = gr.Button("Test Connection", variant="secondary")
                        create_repo_btn = gr.Button("Create Dataset", variant="success")
                    
                    gr.Markdown("### Current Configuration")
                    current_config_output = gr.Textbox(
                        label="Status",
                        lines=8,
                        interactive=False,
                        value=f"πŸ“Š Dataset: {trackio_space.dataset_repo}\nπŸ”‘ HF Token: {'Set' if trackio_space.hf_token else 'Not set'}\nπŸ“ˆ Experiments: {len(trackio_space.experiments)}"
                    )
                
                with gr.Column():
                    gr.Markdown("### Configuration Help")
                    gr.Markdown("""
                    **Getting Your HF Token:**
                    1. Go to [Hugging Face Settings](https://huggingface.co/settings/tokens)
                    2. Click "New token"
                    3. Give it a name (e.g., "Trackio Access")
                    4. Select "Write" permissions
                    5. Copy the token and paste it above
                    
                    **Dataset Repository:**
                    - Format: `username/dataset-name`
                    - Examples: `tonic/trackio-experiments`, `your-username/my-experiments`
                    - Use "Create Dataset" button to create a new repository
                    
                    **Environment Variables:**
                    You can also set these as environment variables:
                    - `HF_TOKEN`: Your Hugging Face token
                    - `TRACKIO_DATASET_REPO`: Dataset repository
                    
                    **Actions:**
                    - **Update Configuration**: Apply new settings and reload experiments
                    - **Test Connection**: Verify access to the dataset repository
                    - **Create Dataset**: Create a new dataset repository if it doesn't exist
                    """)
            
            update_config_btn.click(
                update_trackio_config,
                inputs=[hf_token_input, dataset_repo_input],
                outputs=current_config_output
            )
            
            test_connection_btn.click(
                test_dataset_connection,
                inputs=[hf_token_input, dataset_repo_input],
                outputs=current_config_output
            )
            
            create_repo_btn.click(
                create_dataset_repository,
                inputs=[hf_token_input, dataset_repo_input],
                outputs=current_config_output
            )
        
        # Create Experiment Tab
        with gr.Tab("Create Experiment"):
            gr.Markdown("### Create a New Experiment")
            with gr.Row():
                with gr.Column():
                    experiment_name = gr.Textbox(
                        label="Experiment Name",
                        placeholder="my_smollm3_finetune",
                        value="smollm3_finetune"
                    )
                    experiment_description = gr.Textbox(
                        label="Description",
                        placeholder="Fine-tuning SmolLM3 model on custom dataset",
                        value="SmolLM3 fine-tuning experiment"
                    )
                    create_btn = gr.Button("Create Experiment", variant="primary")
                
                with gr.Column():
                    create_output = gr.Textbox(
                        label="Result",
                        lines=5,
                        interactive=False
                    )
            
            create_btn.click(
                create_experiment_interface,
                inputs=[experiment_name, experiment_description],
                outputs=create_output
            )
        
        # Log Metrics Tab
        with gr.Tab("Log Metrics"):
            gr.Markdown("### Log Training Metrics")
            with gr.Row():
                with gr.Column():
                    metrics_exp_id = gr.Textbox(
                        label="Experiment ID",
                        placeholder="exp_20231201_143022"
                    )
                    metrics_json = gr.Textbox(
                        label="Metrics (JSON)",
                        placeholder='{"loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5}',
                        value='{"loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5, "gpu_memory": 22.5}'
                    )
                    metrics_step = gr.Textbox(
                        label="Step (optional)",
                        placeholder="100"
                    )
                    log_metrics_btn = gr.Button("Log Metrics", variant="primary")
                
                with gr.Column():
                    metrics_output = gr.Textbox(
                        label="Result",
                        lines=5,
                        interactive=False
                    )
            
            log_metrics_btn.click(
                log_metrics_interface,
                inputs=[metrics_exp_id, metrics_json, metrics_step],
                outputs=metrics_output
            )
        
        # Log Parameters Tab
        with gr.Tab("Log Parameters"):
            gr.Markdown("### Log Experiment Parameters")
            with gr.Row():
                with gr.Column():
                    params_exp_id = gr.Textbox(
                        label="Experiment ID",
                        placeholder="exp_20231201_143022"
                    )
                    parameters_json = gr.Textbox(
                        label="Parameters (JSON)",
                        placeholder='{"learning_rate": 2e-5, "batch_size": 4}',
                        value='{"learning_rate": 3.5e-6, "batch_size": 8, "model_name": "HuggingFaceTB/SmolLM3-3B", "max_iters": 18000, "mixed_precision": "bf16"}'
                    )
                    log_params_btn = gr.Button("Log Parameters", variant="primary")
                
                with gr.Column():
                    params_output = gr.Textbox(
                        label="Result",
                        lines=5,
                        interactive=False
                    )
            
            log_params_btn.click(
                log_parameters_interface,
                inputs=[params_exp_id, parameters_json],
                outputs=params_output
            )
        
        # View Experiments Tab
        with gr.Tab("View Experiments"):
            gr.Markdown("### View Experiment Details")
            with gr.Row():
                with gr.Column():
                    view_exp_id = gr.Textbox(
                        label="Experiment ID",
                        placeholder="exp_20231201_143022"
                    )
                    view_btn = gr.Button("View Experiment", variant="primary")
                    list_btn = gr.Button("List All Experiments", variant="secondary")
                
                with gr.Column():
                    view_output = gr.Textbox(
                        label="Experiment Details",
                        lines=20,
                        interactive=False
                    )
            
            view_btn.click(
                get_experiment_details,
                inputs=[view_exp_id],
                outputs=view_output
            )
            
            list_btn.click(
                list_experiments_interface,
                inputs=[],
                outputs=view_output
            )
        
        # Visualization Tab
        with gr.Tab("πŸ“Š Visualizations"):
            gr.Markdown("### Training Metrics Visualization")
            with gr.Row():
                with gr.Column():
                    plot_exp_id = gr.Textbox(
                        label="Experiment ID",
                        placeholder="exp_20231201_143022"
                    )
                    metric_dropdown = gr.Dropdown(
                        label="Metric to Plot",
                        choices=["loss", "accuracy", "learning_rate", "gpu_memory", "training_time"],
                        value="loss"
                    )
                    plot_btn = gr.Button("Create Plot", variant="primary")
                
                with gr.Column():
                    plot_output = gr.Plot(label="Training Metrics")
            
            plot_btn.click(
                create_metrics_plot,
                inputs=[plot_exp_id, metric_dropdown],
                outputs=plot_output
            )
            
            gr.Markdown("### Experiment Comparison")
            with gr.Row():
                with gr.Column():
                    comparison_exp_ids = gr.Textbox(
                        label="Experiment IDs (comma-separated)",
                        placeholder="exp_1,exp_2,exp_3"
                    )
                    comparison_btn = gr.Button("Compare Experiments", variant="primary")
                
                with gr.Column():
                    comparison_plot = gr.Plot(label="Experiment Comparison")
            
            comparison_btn.click(
                create_experiment_comparison,
                inputs=[comparison_exp_ids],
                outputs=comparison_plot
            )
        
        # Demo Data Tab
        with gr.Tab("🎯 Demo Data"):
            gr.Markdown("### Generate Demo Training Data")
            gr.Markdown("Use this to simulate training data for testing the interface")
            with gr.Row():
                with gr.Column():
                    demo_exp_id = gr.Textbox(
                        label="Experiment ID",
                        placeholder="exp_20231201_143022"
                    )
                    demo_btn = gr.Button("Generate Demo Data", variant="primary")
                    create_demo_btn = gr.Button("Create Demo Experiment", variant="secondary")
                
                with gr.Column():
                    demo_output = gr.Textbox(
                        label="Result",
                        lines=5,
                        interactive=False
                    )
            
            demo_btn.click(
                simulate_training_data,
                inputs=[demo_exp_id],
                outputs=demo_output
            )
            
            create_demo_btn.click(
                create_demo_experiment,
                inputs=[],
                outputs=demo_output
            )
        
        # Update Status Tab
        with gr.Tab("Update Status"):
            gr.Markdown("### Update Experiment Status")
            with gr.Row():
                with gr.Column():
                    status_exp_id = gr.Textbox(
                        label="Experiment ID",
                        placeholder="exp_20231201_143022"
                    )
                    status_dropdown = gr.Dropdown(
                        label="Status",
                        choices=["running", "completed", "failed", "paused"],
                        value="running"
                    )
                    update_status_btn = gr.Button("Update Status", variant="primary")
                
                with gr.Column():
                    status_output = gr.Textbox(
                        label="Result",
                        lines=3,
                        interactive=False
                    )
            
            update_status_btn.click(
                update_experiment_status_interface,
                inputs=[status_exp_id, status_dropdown],
                outputs=status_output
            )

# Launch the app
if __name__ == "__main__":
    demo.launch()