Spaces:
Running
Running
File size: 50,697 Bytes
0b9efb9 3c37508 0b9efb9 3c37508 0b9efb9 3c37508 0b9efb9 3c37508 0b9efb9 3c37508 0b9efb9 3c37508 0b9efb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 |
"""
Trackio Deployment on Hugging Face Spaces
A Gradio interface for experiment tracking and monitoring
"""
import gradio as gr
import os
import json
import logging
from datetime import datetime
from typing import Dict, Any, Optional
import requests
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class TrackioSpace:
"""Trackio deployment for Hugging Face Spaces using HF Datasets"""
def __init__(self, hf_token: Optional[str] = None, dataset_repo: Optional[str] = None):
self.experiments = {}
self.current_experiment = None
# Get dataset repository and HF token from parameters or environment variables
# Use dynamic default based on environment or fallback to generic default
default_dataset_repo = os.environ.get('TRACKIO_DATASET_REPO', 'trackio-experiments')
self.dataset_repo = dataset_repo or default_dataset_repo
self.hf_token = hf_token or os.environ.get('HF_TOKEN')
logger.info(f"π§ Using dataset repository: {self.dataset_repo}")
if not self.hf_token:
logger.warning("β οΈ HF_TOKEN not found. Some features may not work.")
self._load_experiments()
def _load_experiments(self):
"""Load experiments from HF Dataset"""
try:
if self.hf_token:
from datasets import load_dataset
# Try to load the dataset
try:
dataset = load_dataset(self.dataset_repo, token=self.hf_token)
logger.info(f"β
Loaded experiments from {self.dataset_repo}")
# Convert dataset to experiments dict
self.experiments = {}
if 'train' in dataset:
for row in dataset['train']:
exp_id = row.get('experiment_id')
if exp_id:
self.experiments[exp_id] = {
'id': exp_id,
'name': row.get('name', ''),
'description': row.get('description', ''),
'created_at': row.get('created_at', ''),
'status': row.get('status', 'running'),
'metrics': json.loads(row.get('metrics', '[]')),
'parameters': json.loads(row.get('parameters', '{}')),
'artifacts': json.loads(row.get('artifacts', '[]')),
'logs': json.loads(row.get('logs', '[]'))
}
logger.info(f"π Loaded {len(self.experiments)} experiments from dataset")
except Exception as e:
logger.warning(f"Failed to load from dataset: {e}")
# Fall back to backup data
self._load_backup_experiments()
else:
# No HF token, use backup data
self._load_backup_experiments()
except Exception as e:
logger.error(f"Failed to load experiments: {e}")
self._load_backup_experiments()
def _load_backup_experiments(self):
"""Load backup experiments when dataset is not available"""
logger.info("π Loading backup experiments...")
# Get dynamic trackio URL from environment or use a placeholder
trackio_url = os.environ.get('TRACKIO_URL', 'https://your-trackio-space.hf.space')
backup_experiments = {
'exp_20250720_130853': {
'id': 'exp_20250720_130853',
'name': 'petite-elle-l-aime-3',
'description': 'SmolLM3 fine-tuning experiment',
'created_at': '2025-07-20T11:20:01.780908',
'status': 'running',
'metrics': [
{
'timestamp': '2025-07-20T11:20:01.780908',
'step': 25,
'metrics': {
'loss': 1.1659,
'grad_norm': 10.3125,
'learning_rate': 7e-08,
'num_tokens': 1642080.0,
'mean_token_accuracy': 0.75923578992486,
'epoch': 0.004851130919895701
}
},
{
'timestamp': '2025-07-20T11:26:39.042155',
'step': 50,
'metrics': {
'loss': 1.165,
'grad_norm': 10.75,
'learning_rate': 1.4291666666666667e-07,
'num_tokens': 3324682.0,
'mean_token_accuracy': 0.7577659255266189,
'epoch': 0.009702261839791402
}
},
{
'timestamp': '2025-07-20T11:33:16.203045',
'step': 75,
'metrics': {
'loss': 1.1639,
'grad_norm': 10.6875,
'learning_rate': 2.1583333333333334e-07,
'num_tokens': 4987941.0,
'mean_token_accuracy': 0.7581205774843692,
'epoch': 0.014553392759687101
}
},
{
'timestamp': '2025-07-20T11:39:53.453917',
'step': 100,
'metrics': {
'loss': 1.1528,
'grad_norm': 10.75,
'learning_rate': 2.8875e-07,
'num_tokens': 6630190.0,
'mean_token_accuracy': 0.7614579878747463,
'epoch': 0.019404523679582803
}
}
],
'parameters': {
'model_name': 'HuggingFaceTB/SmolLM3-3B',
'max_seq_length': 12288,
'use_flash_attention': True,
'use_gradient_checkpointing': False,
'batch_size': 8,
'gradient_accumulation_steps': 16,
'learning_rate': 3.5e-06,
'weight_decay': 0.01,
'warmup_steps': 1200,
'max_iters': 18000,
'eval_interval': 1000,
'log_interval': 25,
'save_interval': 2000,
'optimizer': 'adamw_torch',
'beta1': 0.9,
'beta2': 0.999,
'eps': 1e-08,
'scheduler': 'cosine',
'min_lr': 3.5e-07,
'fp16': False,
'bf16': True,
'ddp_backend': 'nccl',
'ddp_find_unused_parameters': False,
'save_steps': 2000,
'eval_steps': 1000,
'logging_steps': 25,
'save_total_limit': 5,
'eval_strategy': 'steps',
'metric_for_best_model': 'eval_loss',
'greater_is_better': False,
'load_best_model_at_end': True,
'data_dir': None,
'train_file': None,
'validation_file': None,
'test_file': None,
'use_chat_template': True,
'chat_template_kwargs': {'add_generation_prompt': True, 'no_think_system_message': True},
'enable_tracking': True,
'trackio_url': trackio_url,
'trackio_token': None,
'log_artifacts': True,
'log_metrics': True,
'log_config': True,
'experiment_name': 'petite-elle-l-aime-3',
'dataset_name': 'legmlai/openhermes-fr',
'dataset_split': 'train',
'input_field': 'prompt',
'target_field': 'accepted_completion',
'filter_bad_entries': True,
'bad_entry_field': 'bad_entry',
'packing': False,
'max_prompt_length': 12288,
'max_completion_length': 8192,
'truncation': True,
'dataloader_num_workers': 10,
'dataloader_pin_memory': True,
'dataloader_prefetch_factor': 3,
'max_grad_norm': 1.0,
'group_by_length': True
},
'artifacts': [],
'logs': []
},
'exp_20250720_134319': {
'id': 'exp_20250720_134319',
'name': 'petite-elle-l-aime-3-1',
'description': 'SmolLM3 fine-tuning experiment',
'created_at': '2025-07-20T11:54:31.993219',
'status': 'running',
'metrics': [
{
'timestamp': '2025-07-20T11:54:31.993219',
'step': 25,
'metrics': {
'loss': 1.166,
'grad_norm': 10.375,
'learning_rate': 7e-08,
'num_tokens': 1642080.0,
'mean_token_accuracy': 0.7590958896279335,
'epoch': 0.004851130919895701
}
},
{
'timestamp': '2025-07-20T11:54:33.589487',
'step': 25,
'metrics': {
'gpu_0_memory_allocated': 17.202261447906494,
'gpu_0_memory_reserved': 75.474609375,
'gpu_0_utilization': 0,
'cpu_percent': 2.7,
'memory_percent': 10.1
}
}
],
'parameters': {
'model_name': 'HuggingFaceTB/SmolLM3-3B',
'max_seq_length': 12288,
'use_flash_attention': True,
'use_gradient_checkpointing': False,
'batch_size': 8,
'gradient_accumulation_steps': 16,
'learning_rate': 3.5e-06,
'weight_decay': 0.01,
'warmup_steps': 1200,
'max_iters': 18000,
'eval_interval': 1000,
'log_interval': 25,
'save_interval': 2000,
'optimizer': 'adamw_torch',
'beta1': 0.9,
'beta2': 0.999,
'eps': 1e-08,
'scheduler': 'cosine',
'min_lr': 3.5e-07,
'fp16': False,
'bf16': True,
'ddp_backend': 'nccl',
'ddp_find_unused_parameters': False,
'save_steps': 2000,
'eval_steps': 1000,
'logging_steps': 25,
'save_total_limit': 5,
'eval_strategy': 'steps',
'metric_for_best_model': 'eval_loss',
'greater_is_better': False,
'load_best_model_at_end': True,
'data_dir': None,
'train_file': None,
'validation_file': None,
'test_file': None,
'use_chat_template': True,
'chat_template_kwargs': {'add_generation_prompt': True, 'no_think_system_message': True},
'enable_tracking': True,
'trackio_url': trackio_url,
'trackio_token': None,
'log_artifacts': True,
'log_metrics': True,
'log_config': True,
'experiment_name': 'petite-elle-l-aime-3-1',
'dataset_name': 'legmlai/openhermes-fr',
'dataset_split': 'train',
'input_field': 'prompt',
'target_field': 'accepted_completion',
'filter_bad_entries': True,
'bad_entry_field': 'bad_entry',
'packing': False,
'max_prompt_length': 12288,
'max_completion_length': 8192,
'truncation': True,
'dataloader_num_workers': 10,
'dataloader_pin_memory': True,
'dataloader_prefetch_factor': 3,
'max_grad_norm': 1.0,
'group_by_length': True
},
'artifacts': [],
'logs': []
}
}
self.experiments = backup_experiments
self.current_experiment = 'exp_20250720_134319'
logger.info(f"β
Loaded {len(backup_experiments)} backup experiments")
def _save_experiments(self):
"""Save experiments to HF Dataset"""
try:
if self.hf_token:
from datasets import Dataset
from huggingface_hub import HfApi
# Convert experiments to dataset format
dataset_data = []
for exp_id, exp_data in self.experiments.items():
dataset_data.append({
'experiment_id': exp_id,
'name': exp_data.get('name', ''),
'description': exp_data.get('description', ''),
'created_at': exp_data.get('created_at', ''),
'status': exp_data.get('status', 'running'),
'metrics': json.dumps(exp_data.get('metrics', [])),
'parameters': json.dumps(exp_data.get('parameters', {})),
'artifacts': json.dumps(exp_data.get('artifacts', [])),
'logs': json.dumps(exp_data.get('logs', [])),
'last_updated': datetime.now().isoformat()
})
# Create dataset
dataset = Dataset.from_list(dataset_data)
# Push to HF Hub
api = HfApi(token=self.hf_token)
dataset.push_to_hub(
self.dataset_repo,
token=self.hf_token,
private=True # Make it private for security
)
logger.info(f"β
Saved {len(dataset_data)} experiments to {self.dataset_repo}")
else:
logger.warning("β οΈ No HF_TOKEN available, experiments not saved to dataset")
except Exception as e:
logger.error(f"Failed to save experiments to dataset: {e}")
# Fall back to local file for backup
try:
data = {
'experiments': self.experiments,
'current_experiment': self.current_experiment,
'last_updated': datetime.now().isoformat()
}
with open("trackio_experiments_backup.json", 'w') as f:
json.dump(data, f, indent=2, default=str)
logger.info("β
Saved backup to local file")
except Exception as backup_e:
logger.error(f"Failed to save backup: {backup_e}")
def create_experiment(self, name: str, description: str = "") -> Dict[str, Any]:
"""Create a new experiment"""
experiment_id = f"exp_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
experiment = {
'id': experiment_id,
'name': name,
'description': description,
'created_at': datetime.now().isoformat(),
'status': 'running',
'metrics': [],
'parameters': {},
'artifacts': [],
'logs': []
}
self.experiments[experiment_id] = experiment
self.current_experiment = experiment_id
self._save_experiments()
logger.info(f"Created experiment: {experiment_id} - {name}")
return experiment
def log_metrics(self, experiment_id: str, metrics: Dict[str, Any], step: Optional[int] = None):
"""Log metrics for an experiment"""
if experiment_id not in self.experiments:
raise ValueError(f"Experiment {experiment_id} not found")
metric_entry = {
'timestamp': datetime.now().isoformat(),
'step': step,
'metrics': metrics
}
self.experiments[experiment_id]['metrics'].append(metric_entry)
self._save_experiments()
logger.info(f"Logged metrics for experiment {experiment_id}: {metrics}")
def log_parameters(self, experiment_id: str, parameters: Dict[str, Any]):
"""Log parameters for an experiment"""
if experiment_id not in self.experiments:
raise ValueError(f"Experiment {experiment_id} not found")
self.experiments[experiment_id]['parameters'].update(parameters)
self._save_experiments()
logger.info(f"Logged parameters for experiment {experiment_id}: {parameters}")
def log_artifact(self, experiment_id: str, artifact_name: str, artifact_data: str):
"""Log an artifact for an experiment"""
if experiment_id not in self.experiments:
raise ValueError(f"Experiment {experiment_id} not found")
artifact_entry = {
'name': artifact_name,
'timestamp': datetime.now().isoformat(),
'data': artifact_data
}
self.experiments[experiment_id]['artifacts'].append(artifact_entry)
self._save_experiments()
logger.info(f"Logged artifact for experiment {experiment_id}: {artifact_name}")
def get_experiment(self, experiment_id: str) -> Optional[Dict[str, Any]]:
"""Get experiment details"""
return self.experiments.get(experiment_id)
def list_experiments(self) -> Dict[str, Any]:
"""List all experiments"""
return {
'experiments': list(self.experiments.keys()),
'current_experiment': self.current_experiment,
'total_experiments': len(self.experiments)
}
def update_experiment_status(self, experiment_id: str, status: str):
"""Update experiment status"""
if experiment_id in self.experiments:
self.experiments[experiment_id]['status'] = status
self._save_experiments()
logger.info(f"Updated experiment {experiment_id} status to {status}")
def get_metrics_dataframe(self, experiment_id: str) -> pd.DataFrame:
"""Get metrics as a pandas DataFrame for plotting"""
if experiment_id not in self.experiments:
return pd.DataFrame()
experiment = self.experiments[experiment_id]
if not experiment['metrics']:
return pd.DataFrame()
# Convert metrics to DataFrame
data = []
for metric_entry in experiment['metrics']:
step = metric_entry.get('step', 0)
timestamp = metric_entry.get('timestamp', '')
metrics = metric_entry.get('metrics', {})
row = {'step': step, 'timestamp': timestamp}
row.update(metrics)
data.append(row)
return pd.DataFrame(data)
# Global instance
trackio_space = TrackioSpace()
def update_trackio_config(hf_token: str, dataset_repo: str) -> str:
"""Update TrackioSpace configuration with new HF token and dataset repository"""
global trackio_space
try:
# Create new instance with updated configuration
trackio_space = TrackioSpace(hf_token=hf_token if hf_token.strip() else None,
dataset_repo=dataset_repo if dataset_repo.strip() else None)
# Reload experiments with new configuration
trackio_space._load_experiments()
return f"β
Configuration updated successfully!\nπ Dataset: {trackio_space.dataset_repo}\nπ HF Token: {'Set' if trackio_space.hf_token else 'Not set'}\nπ Loaded {len(trackio_space.experiments)} experiments"
except Exception as e:
return f"β Failed to update configuration: {str(e)}"
def test_dataset_connection(hf_token: str, dataset_repo: str) -> str:
"""Test connection to HF Dataset repository"""
try:
if not hf_token.strip():
return "β Please provide a Hugging Face token"
if not dataset_repo.strip():
return "β Please provide a dataset repository"
from datasets import load_dataset
# Test loading the dataset
dataset = load_dataset(dataset_repo, token=hf_token)
# Count experiments
experiment_count = len(dataset['train']) if 'train' in dataset else 0
return f"β
Connection successful!\nπ Dataset: {dataset_repo}\nπ Found {experiment_count} experiments\nπ Dataset URL: https://huggingface.co/datasets/{dataset_repo}"
except Exception as e:
return f"β Connection failed: {str(e)}\n\nπ‘ Troubleshooting:\n1. Check your HF token is correct\n2. Verify the dataset repository exists\n3. Ensure your token has read access to the dataset"
def create_dataset_repository(hf_token: str, dataset_repo: str) -> str:
"""Create HF Dataset repository if it doesn't exist"""
try:
if not hf_token.strip():
return "β Please provide a Hugging Face token"
if not dataset_repo.strip():
return "β Please provide a dataset repository"
from datasets import Dataset
from huggingface_hub import HfApi
# Parse username and dataset name
if '/' not in dataset_repo:
return "β Dataset repository must be in format: username/dataset-name"
username, dataset_name = dataset_repo.split('/', 1)
# Create API client
api = HfApi(token=hf_token)
# Check if dataset exists
try:
api.dataset_info(dataset_repo)
return f"β
Dataset {dataset_repo} already exists!"
except:
# Dataset doesn't exist, create it
pass
# Create empty dataset
empty_dataset = Dataset.from_dict({
'experiment_id': [],
'name': [],
'description': [],
'created_at': [],
'status': [],
'metrics': [],
'parameters': [],
'artifacts': [],
'logs': [],
'last_updated': []
})
# Push to hub
empty_dataset.push_to_hub(
dataset_repo,
token=hf_token,
private=True
)
return f"β
Dataset {dataset_repo} created successfully!\nπ View at: https://huggingface.co/datasets/{dataset_repo}\nπ Ready to store experiments"
except Exception as e:
return f"β Failed to create dataset: {str(e)}\n\nπ‘ Troubleshooting:\n1. Check your HF token has write permissions\n2. Verify the username in the repository name\n3. Ensure the dataset name is valid"
# Initialize API client for remote data
api_client = None
try:
from trackio_api_client import create_trackio_client
api_client = create_trackio_client()
if api_client:
logger.info("β
API client initialized for remote data access")
else:
logger.warning("β οΈ Could not initialize API client, using local data only")
except ImportError:
logger.warning("β οΈ API client not available, using local data only")
# Add Hugging Face Spaces compatibility
def is_huggingface_spaces():
"""Check if running on Hugging Face Spaces"""
return os.environ.get('SPACE_ID') is not None
def get_persistent_data_path():
"""Get a persistent data path for Hugging Face Spaces"""
if is_huggingface_spaces():
# Use a path that might persist better on HF Spaces
return "/tmp/trackio_experiments.json"
else:
return "trackio_experiments.json"
# Override the data file path for HF Spaces
if is_huggingface_spaces():
logger.info("π Running on Hugging Face Spaces - using persistent storage")
trackio_space.data_file = get_persistent_data_path()
def get_remote_experiment_data(experiment_id: str) -> Dict[str, Any]:
"""Get experiment data from remote API"""
if api_client is None:
return None
try:
# Get experiment details from API
details_result = api_client.get_experiment_details(experiment_id)
if "success" in details_result:
return {"remote": True, "data": details_result["data"]}
else:
logger.warning(f"Failed to get remote data for {experiment_id}: {details_result}")
return None
except Exception as e:
logger.error(f"Error getting remote data: {e}")
return None
def parse_remote_metrics_data(experiment_details: str) -> pd.DataFrame:
"""Parse metrics data from remote experiment details"""
try:
# Look for metrics in the experiment details
lines = experiment_details.split('\n')
metrics_data = []
for line in lines:
if 'Step:' in line and 'Metrics:' in line:
# Extract step and metrics from the line
try:
# Parse step number
step_part = line.split('Step:')[1].split('Metrics:')[0].strip()
step = int(step_part)
# Parse metrics JSON
metrics_part = line.split('Metrics:')[1].strip()
metrics = json.loads(metrics_part)
# Add timestamp
row = {'step': step, 'timestamp': datetime.now().isoformat()}
row.update(metrics)
metrics_data.append(row)
except (ValueError, json.JSONDecodeError) as e:
logger.warning(f"Failed to parse metrics line: {line} - {e}")
continue
if metrics_data:
return pd.DataFrame(metrics_data)
else:
return pd.DataFrame()
except Exception as e:
logger.error(f"Error parsing remote metrics: {e}")
return pd.DataFrame()
def get_metrics_dataframe(experiment_id: str) -> pd.DataFrame:
"""Get metrics as a pandas DataFrame for plotting - tries remote first, then local"""
# Try to get remote data first
remote_data = get_remote_experiment_data(experiment_id)
if remote_data:
logger.info(f"Using remote data for {experiment_id}")
# Parse the remote experiment details to extract metrics
df = parse_remote_metrics_data(remote_data["data"])
if not df.empty:
logger.info(f"Found {len(df)} metrics entries from remote data")
return df
else:
logger.warning(f"No metrics found in remote data for {experiment_id}")
# Fall back to local data
logger.info(f"Using local data for {experiment_id}")
return trackio_space.get_metrics_dataframe(experiment_id)
def create_experiment_interface(name: str, description: str) -> str:
"""Create a new experiment"""
try:
experiment = trackio_space.create_experiment(name, description)
return f"β
Experiment created successfully!\nID: {experiment['id']}\nName: {experiment['name']}\nStatus: {experiment['status']}"
except Exception as e:
return f"β Error creating experiment: {str(e)}"
def log_metrics_interface(experiment_id: str, metrics_json: str, step: str) -> str:
"""Log metrics for an experiment"""
try:
metrics = json.loads(metrics_json)
step_int = int(step) if step else None
trackio_space.log_metrics(experiment_id, metrics, step_int)
return f"β
Metrics logged successfully for experiment {experiment_id}\nStep: {step_int}\nMetrics: {json.dumps(metrics, indent=2)}"
except Exception as e:
return f"β Error logging metrics: {str(e)}"
def log_parameters_interface(experiment_id: str, parameters_json: str) -> str:
"""Log parameters for an experiment"""
try:
parameters = json.loads(parameters_json)
trackio_space.log_parameters(experiment_id, parameters)
return f"β
Parameters logged successfully for experiment {experiment_id}\nParameters: {json.dumps(parameters, indent=2)}"
except Exception as e:
return f"β Error logging parameters: {str(e)}"
def get_experiment_details(experiment_id: str) -> str:
"""Get experiment details"""
try:
experiment = trackio_space.get_experiment(experiment_id)
if experiment:
# Format the output nicely
details = f"""
π EXPERIMENT DETAILS
====================
ID: {experiment['id']}
Name: {experiment['name']}
Description: {experiment['description']}
Status: {experiment['status']}
Created: {experiment['created_at']}
π METRICS COUNT: {len(experiment['metrics'])}
π PARAMETERS COUNT: {len(experiment['parameters'])}
π¦ ARTIFACTS COUNT: {len(experiment['artifacts'])}
π§ PARAMETERS:
{json.dumps(experiment['parameters'], indent=2)}
π LATEST METRICS:
"""
if experiment['metrics']:
latest_metrics = experiment['metrics'][-1]
details += f"Step: {latest_metrics.get('step', 'N/A')}\n"
details += f"Timestamp: {latest_metrics.get('timestamp', 'N/A')}\n"
details += f"Metrics: {json.dumps(latest_metrics.get('metrics', {}), indent=2)}"
else:
details += "No metrics logged yet."
return details
else:
return f"β Experiment {experiment_id} not found"
except Exception as e:
return f"β Error getting experiment details: {str(e)}"
def list_experiments_interface() -> str:
"""List all experiments with details"""
try:
experiments_info = trackio_space.list_experiments()
experiments = trackio_space.experiments
if not experiments:
return "π No experiments found. Create one first!"
result = f"π EXPERIMENTS OVERVIEW\n{'='*50}\n"
result += f"Total Experiments: {len(experiments)}\n"
result += f"Current Experiment: {experiments_info['current_experiment']}\n\n"
for exp_id, exp_data in experiments.items():
status_emoji = {
'running': 'π’',
'completed': 'β
',
'failed': 'β',
'paused': 'βΈοΈ'
}.get(exp_data['status'], 'β')
result += f"{status_emoji} {exp_id}\n"
result += f" Name: {exp_data['name']}\n"
result += f" Status: {exp_data['status']}\n"
result += f" Created: {exp_data['created_at']}\n"
result += f" Metrics: {len(exp_data['metrics'])} entries\n"
result += f" Parameters: {len(exp_data['parameters'])} entries\n"
result += f" Artifacts: {len(exp_data['artifacts'])} entries\n\n"
return result
except Exception as e:
return f"β Error listing experiments: {str(e)}"
def update_experiment_status_interface(experiment_id: str, status: str) -> str:
"""Update experiment status"""
try:
trackio_space.update_experiment_status(experiment_id, status)
return f"β
Experiment {experiment_id} status updated to {status}"
except Exception as e:
return f"β Error updating experiment status: {str(e)}"
def create_metrics_plot(experiment_id: str, metric_name: str = "loss") -> go.Figure:
"""Create a plot for a specific metric"""
try:
df = get_metrics_dataframe(experiment_id)
if df.empty:
# Return empty plot
fig = go.Figure()
fig.add_annotation(
text="No metrics data available",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False
)
return fig
if metric_name not in df.columns:
# Show available metrics
available_metrics = [col for col in df.columns if col not in ['step', 'timestamp']]
fig = go.Figure()
fig.add_annotation(
text=f"Available metrics: {', '.join(available_metrics)}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False
)
return fig
fig = px.line(df, x='step', y=metric_name, title=f'{metric_name} over time')
fig.update_layout(
xaxis_title="Training Step",
yaxis_title=metric_name.title(),
hovermode='x unified'
)
return fig
except Exception as e:
fig = go.Figure()
fig.add_annotation(
text=f"Error creating plot: {str(e)}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False
)
return fig
def create_experiment_comparison(experiment_ids: str) -> go.Figure:
"""Compare multiple experiments"""
try:
exp_ids = [exp_id.strip() for exp_id in experiment_ids.split(',')]
fig = go.Figure()
for exp_id in exp_ids:
df = get_metrics_dataframe(exp_id)
if not df.empty and 'loss' in df.columns:
fig.add_trace(go.Scatter(
x=df['step'],
y=df['loss'],
mode='lines+markers',
name=f"{exp_id} - Loss",
line=dict(width=2)
))
fig.update_layout(
title="Experiment Comparison - Loss",
xaxis_title="Training Step",
yaxis_title="Loss",
hovermode='x unified'
)
return fig
except Exception as e:
fig = go.Figure()
fig.add_annotation(
text=f"Error creating comparison: {str(e)}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False
)
return fig
def simulate_training_data(experiment_id: str):
"""Simulate training data for demonstration"""
try:
# Simulate some realistic training metrics
for step in range(0, 1000, 50):
# Simulate loss decreasing over time
loss = 2.0 * np.exp(-step / 500) + 0.1 * np.random.random()
accuracy = 0.3 + 0.6 * (1 - np.exp(-step / 300)) + 0.05 * np.random.random()
lr = 3.5e-6 * (0.9 ** (step // 200))
metrics = {
"loss": round(loss, 4),
"accuracy": round(accuracy, 4),
"learning_rate": round(lr, 8),
"gpu_memory": round(20 + 5 * np.random.random(), 2),
"training_time": round(0.5 + 0.2 * np.random.random(), 3)
}
trackio_space.log_metrics(experiment_id, metrics, step)
return f"β
Simulated training data for experiment {experiment_id}\nAdded 20 metric entries (steps 0-950)"
except Exception as e:
return f"β Error simulating data: {str(e)}"
def create_demo_experiment():
"""Create a demo experiment with training data"""
try:
# Create demo experiment
experiment = trackio_space.create_experiment(
"demo_smollm3_training",
"Demo experiment with simulated training data"
)
experiment_id = experiment['id']
# Add some demo parameters
parameters = {
"model_name": "HuggingFaceTB/SmolLM3-3B",
"batch_size": 8,
"learning_rate": 3.5e-6,
"max_iters": 18000,
"mixed_precision": "bf16",
"dataset": "legmlai/openhermes-fr"
}
trackio_space.log_parameters(experiment_id, parameters)
# Add demo training data
simulate_training_data(experiment_id)
return f"β
Demo experiment created: {experiment_id}\nYou can now test the visualization with this experiment!"
except Exception as e:
return f"β Error creating demo experiment: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Trackio - Experiment Tracking", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π Trackio Experiment Tracking & Monitoring")
gr.Markdown("Monitor and track your ML experiments with real-time visualization!")
with gr.Tabs():
# Configuration Tab
with gr.Tab("βοΈ Configuration"):
gr.Markdown("### Configure HF Datasets Connection")
gr.Markdown("Set your Hugging Face token and dataset repository for persistent experiment storage.")
with gr.Row():
with gr.Column():
hf_token_input = gr.Textbox(
label="Hugging Face Token",
placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
type="password",
info="Your HF token for dataset access (optional - will use environment variable if not set)"
)
dataset_repo_input = gr.Textbox(
label="Dataset Repository",
placeholder="your-username/your-dataset-name",
value=os.environ.get('TRACKIO_DATASET_REPO', 'trackio-experiments'),
info="HF Dataset repository for experiment storage"
)
with gr.Row():
update_config_btn = gr.Button("Update Configuration", variant="primary")
test_connection_btn = gr.Button("Test Connection", variant="secondary")
create_repo_btn = gr.Button("Create Dataset", variant="success")
gr.Markdown("### Current Configuration")
current_config_output = gr.Textbox(
label="Status",
lines=8,
interactive=False,
value=f"π Dataset: {trackio_space.dataset_repo}\nπ HF Token: {'Set' if trackio_space.hf_token else 'Not set'}\nπ Experiments: {len(trackio_space.experiments)}"
)
with gr.Column():
gr.Markdown("### Configuration Help")
gr.Markdown("""
**Getting Your HF Token:**
1. Go to [Hugging Face Settings](https://huggingface.co/settings/tokens)
2. Click "New token"
3. Give it a name (e.g., "Trackio Access")
4. Select "Write" permissions
5. Copy the token and paste it above
**Dataset Repository:**
- Format: `username/dataset-name`
- Examples: `tonic/trackio-experiments`, `your-username/my-experiments`
- Use "Create Dataset" button to create a new repository
**Environment Variables:**
You can also set these as environment variables:
- `HF_TOKEN`: Your Hugging Face token
- `TRACKIO_DATASET_REPO`: Dataset repository
**Actions:**
- **Update Configuration**: Apply new settings and reload experiments
- **Test Connection**: Verify access to the dataset repository
- **Create Dataset**: Create a new dataset repository if it doesn't exist
""")
update_config_btn.click(
update_trackio_config,
inputs=[hf_token_input, dataset_repo_input],
outputs=current_config_output
)
test_connection_btn.click(
test_dataset_connection,
inputs=[hf_token_input, dataset_repo_input],
outputs=current_config_output
)
create_repo_btn.click(
create_dataset_repository,
inputs=[hf_token_input, dataset_repo_input],
outputs=current_config_output
)
# Create Experiment Tab
with gr.Tab("Create Experiment"):
gr.Markdown("### Create a New Experiment")
with gr.Row():
with gr.Column():
experiment_name = gr.Textbox(
label="Experiment Name",
placeholder="my_smollm3_finetune",
value="smollm3_finetune"
)
experiment_description = gr.Textbox(
label="Description",
placeholder="Fine-tuning SmolLM3 model on custom dataset",
value="SmolLM3 fine-tuning experiment"
)
create_btn = gr.Button("Create Experiment", variant="primary")
with gr.Column():
create_output = gr.Textbox(
label="Result",
lines=5,
interactive=False
)
create_btn.click(
create_experiment_interface,
inputs=[experiment_name, experiment_description],
outputs=create_output
)
# Log Metrics Tab
with gr.Tab("Log Metrics"):
gr.Markdown("### Log Training Metrics")
with gr.Row():
with gr.Column():
metrics_exp_id = gr.Textbox(
label="Experiment ID",
placeholder="exp_20231201_143022"
)
metrics_json = gr.Textbox(
label="Metrics (JSON)",
placeholder='{"loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5}',
value='{"loss": 0.5, "accuracy": 0.85, "learning_rate": 2e-5, "gpu_memory": 22.5}'
)
metrics_step = gr.Textbox(
label="Step (optional)",
placeholder="100"
)
log_metrics_btn = gr.Button("Log Metrics", variant="primary")
with gr.Column():
metrics_output = gr.Textbox(
label="Result",
lines=5,
interactive=False
)
log_metrics_btn.click(
log_metrics_interface,
inputs=[metrics_exp_id, metrics_json, metrics_step],
outputs=metrics_output
)
# Log Parameters Tab
with gr.Tab("Log Parameters"):
gr.Markdown("### Log Experiment Parameters")
with gr.Row():
with gr.Column():
params_exp_id = gr.Textbox(
label="Experiment ID",
placeholder="exp_20231201_143022"
)
parameters_json = gr.Textbox(
label="Parameters (JSON)",
placeholder='{"learning_rate": 2e-5, "batch_size": 4}',
value='{"learning_rate": 3.5e-6, "batch_size": 8, "model_name": "HuggingFaceTB/SmolLM3-3B", "max_iters": 18000, "mixed_precision": "bf16"}'
)
log_params_btn = gr.Button("Log Parameters", variant="primary")
with gr.Column():
params_output = gr.Textbox(
label="Result",
lines=5,
interactive=False
)
log_params_btn.click(
log_parameters_interface,
inputs=[params_exp_id, parameters_json],
outputs=params_output
)
# View Experiments Tab
with gr.Tab("View Experiments"):
gr.Markdown("### View Experiment Details")
with gr.Row():
with gr.Column():
view_exp_id = gr.Textbox(
label="Experiment ID",
placeholder="exp_20231201_143022"
)
view_btn = gr.Button("View Experiment", variant="primary")
list_btn = gr.Button("List All Experiments", variant="secondary")
with gr.Column():
view_output = gr.Textbox(
label="Experiment Details",
lines=20,
interactive=False
)
view_btn.click(
get_experiment_details,
inputs=[view_exp_id],
outputs=view_output
)
list_btn.click(
list_experiments_interface,
inputs=[],
outputs=view_output
)
# Visualization Tab
with gr.Tab("π Visualizations"):
gr.Markdown("### Training Metrics Visualization")
with gr.Row():
with gr.Column():
plot_exp_id = gr.Textbox(
label="Experiment ID",
placeholder="exp_20231201_143022"
)
metric_dropdown = gr.Dropdown(
label="Metric to Plot",
choices=["loss", "accuracy", "learning_rate", "gpu_memory", "training_time"],
value="loss"
)
plot_btn = gr.Button("Create Plot", variant="primary")
with gr.Column():
plot_output = gr.Plot(label="Training Metrics")
plot_btn.click(
create_metrics_plot,
inputs=[plot_exp_id, metric_dropdown],
outputs=plot_output
)
gr.Markdown("### Experiment Comparison")
with gr.Row():
with gr.Column():
comparison_exp_ids = gr.Textbox(
label="Experiment IDs (comma-separated)",
placeholder="exp_1,exp_2,exp_3"
)
comparison_btn = gr.Button("Compare Experiments", variant="primary")
with gr.Column():
comparison_plot = gr.Plot(label="Experiment Comparison")
comparison_btn.click(
create_experiment_comparison,
inputs=[comparison_exp_ids],
outputs=comparison_plot
)
# Demo Data Tab
with gr.Tab("π― Demo Data"):
gr.Markdown("### Generate Demo Training Data")
gr.Markdown("Use this to simulate training data for testing the interface")
with gr.Row():
with gr.Column():
demo_exp_id = gr.Textbox(
label="Experiment ID",
placeholder="exp_20231201_143022"
)
demo_btn = gr.Button("Generate Demo Data", variant="primary")
create_demo_btn = gr.Button("Create Demo Experiment", variant="secondary")
with gr.Column():
demo_output = gr.Textbox(
label="Result",
lines=5,
interactive=False
)
demo_btn.click(
simulate_training_data,
inputs=[demo_exp_id],
outputs=demo_output
)
create_demo_btn.click(
create_demo_experiment,
inputs=[],
outputs=demo_output
)
# Update Status Tab
with gr.Tab("Update Status"):
gr.Markdown("### Update Experiment Status")
with gr.Row():
with gr.Column():
status_exp_id = gr.Textbox(
label="Experiment ID",
placeholder="exp_20231201_143022"
)
status_dropdown = gr.Dropdown(
label="Status",
choices=["running", "completed", "failed", "paused"],
value="running"
)
update_status_btn = gr.Button("Update Status", variant="primary")
with gr.Column():
status_output = gr.Textbox(
label="Result",
lines=3,
interactive=False
)
update_status_btn.click(
update_experiment_status_interface,
inputs=[status_exp_id, status_dropdown],
outputs=status_output
)
# Launch the app
if __name__ == "__main__":
demo.launch() |