File size: 13,311 Bytes
d8dd7a1
 
 
 
 
 
 
 
 
 
 
 
 
5fe83da
 
 
d8dd7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe83da
 
 
d8dd7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f7e1b
96fd5b3
 
d9f7e1b
d8dd7a1
90aadc0
d8dd7a1
96fd5b3
90aadc0
 
d8dd7a1
96fd5b3
d8dd7a1
 
90aadc0
d8dd7a1
96fd5b3
d8dd7a1
d9f7e1b
5fe83da
8606a9a
d9f7e1b
 
 
 
2248f2d
 
 
 
8606a9a
 
 
 
 
 
96fd5b3
8606a9a
 
 
 
 
 
 
 
 
96fd5b3
8606a9a
 
 
 
 
96fd5b3
8606a9a
d9f7e1b
 
 
 
 
 
 
 
 
 
 
 
 
 
96fd5b3
d9f7e1b
 
96fd5b3
d9f7e1b
 
 
96fd5b3
d4bee15
 
d8dd7a1
 
 
d4bee15
d8dd7a1
5fe83da
d8dd7a1
d9f7e1b
 
96fd5b3
 
d9f7e1b
 
 
 
 
 
 
 
 
 
 
 
 
 
96fd5b3
d9f7e1b
d8dd7a1
 
 
 
 
96fd5b3
d8dd7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe83da
 
 
 
 
 
 
 
 
96fd5b3
5fe83da
d8dd7a1
 
 
 
 
 
96fd5b3
d8dd7a1
 
 
084000d
d8dd7a1
 
 
 
 
 
 
 
 
5fe83da
 
 
 
 
 
 
 
 
 
 
 
d8dd7a1
96fd5b3
d8dd7a1
 
96fd5b3
5fe83da
 
 
d8dd7a1
 
 
 
 
 
 
 
 
 
 
 
 
96fd5b3
d8dd7a1
 
 
96fd5b3
d8dd7a1
 
 
 
 
96fd5b3
d8dd7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96fd5b3
d8dd7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96fd5b3
d8dd7a1
 
96fd5b3
d8dd7a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
"""
SmolLM3 Trainer
Handles the training loop and integrates with Hugging Face Trainer
"""

import os
import torch
import logging
from typing import Optional, Dict, Any
from transformers import Trainer, TrainingArguments
from trl import SFTTrainer
import json

# Import monitoring
from monitoring import create_monitor_from_config

logger = logging.getLogger(__name__)

class SmolLM3Trainer:
    """Trainer for SmolLM3 fine-tuning"""
    
    def __init__(
        self,
        model,
        dataset,
        config,
        output_dir: str,
        init_from: str = "scratch",
        use_sft_trainer: bool = True
    ):
        self.model = model
        self.dataset = dataset
        self.config = config
        self.output_dir = output_dir
        self.init_from = init_from
        self.use_sft_trainer = use_sft_trainer
        
        # Initialize monitoring
        self.monitor = create_monitor_from_config(config)
        
        # Setup trainer
        self.trainer = self._setup_trainer()
        
    def _setup_trainer(self):
        """Setup the trainer"""
        logger.info("Setting up trainer")
        
        # Get training arguments
        training_args = self.model.get_training_arguments(
            output_dir=self.output_dir,
            save_steps=self.config.save_steps,
            eval_steps=self.config.eval_steps,
            logging_steps=self.config.logging_steps,
            max_steps=self.config.max_iters,
        )
        
        # Debug: Print training arguments
        logger.info("Training arguments keys: %s", list(training_args.__dict__.keys()))
        logger.info("Training arguments type: %s", type(training_args))
        
        # Get datasets
        logger.info("Getting train dataset...")
        train_dataset = self.dataset.get_train_dataset()
        logger.info("Train dataset: %s with %d samples", type(train_dataset), len(train_dataset))
        
        logger.info("Getting eval dataset...")
        eval_dataset = self.dataset.get_eval_dataset()
        logger.info("Eval dataset: %s with %d samples", type(eval_dataset), len(eval_dataset))
        
        # Get data collator
        logger.info("Getting data collator...")
        data_collator = self.dataset.get_data_collator()
        logger.info("Data collator: %s", type(data_collator))
        
        # Add monitoring callbacks
        callbacks = []
        
        # Add simple console callback for basic monitoring
        from transformers import TrainerCallback
        
        class SimpleConsoleCallback(TrainerCallback):
            def on_init_end(self, args, state, control, **kwargs):
                """Called when training initialization is complete"""
                print("πŸ”§ Training initialization completed")
            
            def on_log(self, args, state, control, logs=None, **kwargs):
                """Log metrics to console"""
                if logs and isinstance(logs, dict):
                    step = state.global_step if hasattr(state, 'global_step') else 'unknown'
                    loss = logs.get('loss', 'N/A')
                    lr = logs.get('learning_rate', 'N/A')
                    print("Step {}: loss={:.4f}, lr={}".format(step, loss, lr))
            
            def on_train_begin(self, args, state, control, **kwargs):
                print("πŸš€ Training started!")
            
            def on_train_end(self, args, state, control, **kwargs):
                print("βœ… Training completed!")
            
            def on_save(self, args, state, control, **kwargs):
                step = state.global_step if hasattr(state, 'global_step') else 'unknown'
                print("πŸ’Ύ Checkpoint saved at step {}".format(step))
            
            def on_evaluate(self, args, state, control, metrics=None, **kwargs):
                if metrics and isinstance(metrics, dict):
                    step = state.global_step if hasattr(state, 'global_step') else 'unknown'
                    eval_loss = metrics.get('eval_loss', 'N/A')
                    print("πŸ“Š Evaluation at step {}: eval_loss={}".format(step, eval_loss))
        
        # Add console callback
        callbacks.append(SimpleConsoleCallback())
        logger.info("Added simple console monitoring callback")
        
        # Add Trackio callback if available
        if self.monitor and self.monitor.enable_tracking:
            try:
                trackio_callback = self.monitor.create_monitoring_callback()
                if trackio_callback:
                    callbacks.append(trackio_callback)
                    logger.info("Added Trackio monitoring callback")
                else:
                    logger.warning("Failed to create Trackio callback")
            except Exception as e:
                logger.error("Error creating Trackio callback: %s", e)
                logger.info("Continuing with console monitoring only")
        
        logger.info("Total callbacks: %d", len(callbacks))
        
        # Try SFTTrainer first (better for instruction tuning)
        logger.info("Creating SFTTrainer with training arguments...")
        logger.info("Training args type: %s", type(training_args))
        try:
            trainer = SFTTrainer(
                model=self.model.model,
                train_dataset=train_dataset,
                eval_dataset=eval_dataset,
                args=training_args,
                data_collator=data_collator,
                callbacks=callbacks,
            )
            logger.info("Using SFTTrainer (optimized for instruction tuning)")
        except Exception as e:
            logger.warning("SFTTrainer failed: %s", e)
            logger.error("SFTTrainer creation error details: %s: %s", type(e).__name__, str(e))
            
            # Fallback to standard Trainer
            try:
                trainer = Trainer(
                    model=self.model.model,
                    tokenizer=self.model.tokenizer,
                    args=training_args,
                    train_dataset=train_dataset,
                    eval_dataset=eval_dataset,
                    data_collator=data_collator,
                    callbacks=callbacks,
                )
                logger.info("Using standard Hugging Face Trainer (fallback)")
            except Exception as e2:
                logger.error("Standard Trainer also failed: %s", e2)
                raise e2
        
        return trainer
    
    def load_checkpoint(self, checkpoint_path: str):
        """Load checkpoint for resuming training"""
        logger.info("Loading checkpoint from %s", checkpoint_path)
        
        if self.init_from == "resume":
            # Load the model from checkpoint
            self.model.load_checkpoint(checkpoint_path)
            
            # Update trainer with loaded model
            self.trainer.model = self.model.model
            
            logger.info("Checkpoint loaded successfully")
        elif self.init_from == "pretrained":
            # Model is already loaded from pretrained
            logger.info("Using pretrained model")
        else:
            logger.info("Starting from scratch")
    
    def train(self):
        """Start training"""
        logger.info("Starting training")
        
        # Log configuration to Trackio
        if self.monitor and self.monitor.enable_tracking:
            config_dict = {k: v for k, v in self.config.__dict__.items() 
                          if not k.startswith('_')}
            self.monitor.log_config(config_dict)
            
            # Log experiment URL
            experiment_url = self.monitor.get_experiment_url()
            if experiment_url:
                logger.info("Trackio experiment URL: %s", experiment_url)
        
        # Load checkpoint if resuming
        if self.init_from == "resume":
            checkpoint_path = "/input-checkpoint"
            if os.path.exists(checkpoint_path):
                self.load_checkpoint(checkpoint_path)
            else:
                logger.warning("Checkpoint path %s not found, starting from scratch", checkpoint_path)
        
        # Start training
        try:
            logger.info("About to start trainer.train()")
            train_result = self.trainer.train()
            
            # Save the final model
            self.trainer.save_model()
            
            # Save training results
            with open(os.path.join(self.output_dir, "train_results.json"), "w") as f:
                json.dump(train_result.metrics, f, indent=2)
            
            # Log training summary to Trackio
            if self.monitor and self.monitor.enable_tracking:
                summary = {
                    'final_loss': train_result.metrics.get('train_loss', 0),
                    'total_steps': train_result.metrics.get('train_runtime', 0),
                    'training_time': train_result.metrics.get('train_runtime', 0),
                    'output_dir': self.output_dir,
                    'model_name': getattr(self.config, 'model_name', 'unknown'),
                }
                self.monitor.log_training_summary(summary)
                self.monitor.close()
            
            logger.info("Training completed successfully!")
            logger.info("Training metrics: %s", train_result.metrics)
            
        except Exception as e:
            logger.error("Training failed: %s", e)
            # Close monitoring on error
            if self.monitor and self.monitor.enable_tracking:
                self.monitor.close()
            raise
    
    def evaluate(self):
        """Evaluate the model"""
        logger.info("Starting evaluation")
        
        try:
            eval_results = self.trainer.evaluate()
            
            # Save evaluation results
            with open(os.path.join(self.output_dir, "eval_results.json"), "w") as f:
                json.dump(eval_results, f, indent=2)
            
            logger.info("Evaluation completed: %s", eval_results)
            return eval_results
            
        except Exception as e:
            logger.error("Evaluation failed: %s", e)
            raise
    
    def save_model(self, path: Optional[str] = None):
        """Save the trained model"""
        save_path = path or self.output_dir
        logger.info("Saving model to %s", save_path)
        
        try:
            self.trainer.save_model(save_path)
            self.model.tokenizer.save_pretrained(save_path)
            
            # Save training configuration
            if self.config:
                config_dict = {k: v for k, v in self.config.__dict__.items() 
                              if not k.startswith('_')}
                with open(os.path.join(save_path, 'training_config.json'), 'w') as f:
                    json.dump(config_dict, f, indent=2, default=str)
            
            logger.info("Model saved successfully!")
            
        except Exception as e:
            logger.error("Failed to save model: %s", e)
            raise

class SmolLM3DPOTrainer:
    """DPO Trainer for SmolLM3 preference optimization"""
    
    def __init__(
        self,
        model,
        dataset,
        config,
        output_dir: str,
        ref_model=None
    ):
        self.model = model
        self.dataset = dataset
        self.config = config
        self.output_dir = output_dir
        self.ref_model = ref_model
        
        # Setup DPO trainer
        self.trainer = self._setup_dpo_trainer()
    
    def _setup_dpo_trainer(self):
        """Setup DPO trainer"""
        from trl import DPOTrainer
        
        # Get training arguments
        training_args = self.model.get_training_arguments(
            output_dir=self.output_dir,
            save_steps=self.config.save_steps,
            eval_steps=self.config.eval_steps,
            logging_steps=self.config.logging_steps,
            max_steps=self.config.max_iters,
        )
        
        # Get preference dataset
        train_dataset = self.dataset.get_train_dataset()
        eval_dataset = self.dataset.get_eval_dataset()
        
        # Setup DPO trainer
        trainer = DPOTrainer(
            model=self.model.model,
            ref_model=self.ref_model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            tokenizer=self.model.tokenizer,
            max_prompt_length=self.config.max_seq_length // 2,
            max_length=self.config.max_seq_length,
        )
        
        return trainer
    
    def train(self):
        """Start DPO training"""
        logger.info("Starting DPO training")
        
        try:
            train_result = self.trainer.train()
            
            # Save the final model
            self.trainer.save_model()
            
            # Save training results
            with open(os.path.join(self.output_dir, "dpo_train_results.json"), "w") as f:
                json.dump(train_result.metrics, f, indent=2)
            
            logger.info("DPO training completed successfully!")
            logger.info("Training metrics: %s", train_result.metrics)
            
        except Exception as e:
            logger.error("DPO training failed: %s", e)
            raise