Spaces:
Running
Running
File size: 13,311 Bytes
d8dd7a1 5fe83da d8dd7a1 5fe83da d8dd7a1 d9f7e1b 96fd5b3 d9f7e1b d8dd7a1 90aadc0 d8dd7a1 96fd5b3 90aadc0 d8dd7a1 96fd5b3 d8dd7a1 90aadc0 d8dd7a1 96fd5b3 d8dd7a1 d9f7e1b 5fe83da 8606a9a d9f7e1b 2248f2d 8606a9a 96fd5b3 8606a9a 96fd5b3 8606a9a 96fd5b3 8606a9a d9f7e1b 96fd5b3 d9f7e1b 96fd5b3 d9f7e1b 96fd5b3 d4bee15 d8dd7a1 d4bee15 d8dd7a1 5fe83da d8dd7a1 d9f7e1b 96fd5b3 d9f7e1b 96fd5b3 d9f7e1b d8dd7a1 96fd5b3 d8dd7a1 5fe83da 96fd5b3 5fe83da d8dd7a1 96fd5b3 d8dd7a1 084000d d8dd7a1 5fe83da d8dd7a1 96fd5b3 d8dd7a1 96fd5b3 5fe83da d8dd7a1 96fd5b3 d8dd7a1 96fd5b3 d8dd7a1 96fd5b3 d8dd7a1 96fd5b3 d8dd7a1 96fd5b3 d8dd7a1 96fd5b3 d8dd7a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
"""
SmolLM3 Trainer
Handles the training loop and integrates with Hugging Face Trainer
"""
import os
import torch
import logging
from typing import Optional, Dict, Any
from transformers import Trainer, TrainingArguments
from trl import SFTTrainer
import json
# Import monitoring
from monitoring import create_monitor_from_config
logger = logging.getLogger(__name__)
class SmolLM3Trainer:
"""Trainer for SmolLM3 fine-tuning"""
def __init__(
self,
model,
dataset,
config,
output_dir: str,
init_from: str = "scratch",
use_sft_trainer: bool = True
):
self.model = model
self.dataset = dataset
self.config = config
self.output_dir = output_dir
self.init_from = init_from
self.use_sft_trainer = use_sft_trainer
# Initialize monitoring
self.monitor = create_monitor_from_config(config)
# Setup trainer
self.trainer = self._setup_trainer()
def _setup_trainer(self):
"""Setup the trainer"""
logger.info("Setting up trainer")
# Get training arguments
training_args = self.model.get_training_arguments(
output_dir=self.output_dir,
save_steps=self.config.save_steps,
eval_steps=self.config.eval_steps,
logging_steps=self.config.logging_steps,
max_steps=self.config.max_iters,
)
# Debug: Print training arguments
logger.info("Training arguments keys: %s", list(training_args.__dict__.keys()))
logger.info("Training arguments type: %s", type(training_args))
# Get datasets
logger.info("Getting train dataset...")
train_dataset = self.dataset.get_train_dataset()
logger.info("Train dataset: %s with %d samples", type(train_dataset), len(train_dataset))
logger.info("Getting eval dataset...")
eval_dataset = self.dataset.get_eval_dataset()
logger.info("Eval dataset: %s with %d samples", type(eval_dataset), len(eval_dataset))
# Get data collator
logger.info("Getting data collator...")
data_collator = self.dataset.get_data_collator()
logger.info("Data collator: %s", type(data_collator))
# Add monitoring callbacks
callbacks = []
# Add simple console callback for basic monitoring
from transformers import TrainerCallback
class SimpleConsoleCallback(TrainerCallback):
def on_init_end(self, args, state, control, **kwargs):
"""Called when training initialization is complete"""
print("π§ Training initialization completed")
def on_log(self, args, state, control, logs=None, **kwargs):
"""Log metrics to console"""
if logs and isinstance(logs, dict):
step = state.global_step if hasattr(state, 'global_step') else 'unknown'
loss = logs.get('loss', 'N/A')
lr = logs.get('learning_rate', 'N/A')
print("Step {}: loss={:.4f}, lr={}".format(step, loss, lr))
def on_train_begin(self, args, state, control, **kwargs):
print("π Training started!")
def on_train_end(self, args, state, control, **kwargs):
print("β
Training completed!")
def on_save(self, args, state, control, **kwargs):
step = state.global_step if hasattr(state, 'global_step') else 'unknown'
print("πΎ Checkpoint saved at step {}".format(step))
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
if metrics and isinstance(metrics, dict):
step = state.global_step if hasattr(state, 'global_step') else 'unknown'
eval_loss = metrics.get('eval_loss', 'N/A')
print("π Evaluation at step {}: eval_loss={}".format(step, eval_loss))
# Add console callback
callbacks.append(SimpleConsoleCallback())
logger.info("Added simple console monitoring callback")
# Add Trackio callback if available
if self.monitor and self.monitor.enable_tracking:
try:
trackio_callback = self.monitor.create_monitoring_callback()
if trackio_callback:
callbacks.append(trackio_callback)
logger.info("Added Trackio monitoring callback")
else:
logger.warning("Failed to create Trackio callback")
except Exception as e:
logger.error("Error creating Trackio callback: %s", e)
logger.info("Continuing with console monitoring only")
logger.info("Total callbacks: %d", len(callbacks))
# Try SFTTrainer first (better for instruction tuning)
logger.info("Creating SFTTrainer with training arguments...")
logger.info("Training args type: %s", type(training_args))
try:
trainer = SFTTrainer(
model=self.model.model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
args=training_args,
data_collator=data_collator,
callbacks=callbacks,
)
logger.info("Using SFTTrainer (optimized for instruction tuning)")
except Exception as e:
logger.warning("SFTTrainer failed: %s", e)
logger.error("SFTTrainer creation error details: %s: %s", type(e).__name__, str(e))
# Fallback to standard Trainer
try:
trainer = Trainer(
model=self.model.model,
tokenizer=self.model.tokenizer,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
callbacks=callbacks,
)
logger.info("Using standard Hugging Face Trainer (fallback)")
except Exception as e2:
logger.error("Standard Trainer also failed: %s", e2)
raise e2
return trainer
def load_checkpoint(self, checkpoint_path: str):
"""Load checkpoint for resuming training"""
logger.info("Loading checkpoint from %s", checkpoint_path)
if self.init_from == "resume":
# Load the model from checkpoint
self.model.load_checkpoint(checkpoint_path)
# Update trainer with loaded model
self.trainer.model = self.model.model
logger.info("Checkpoint loaded successfully")
elif self.init_from == "pretrained":
# Model is already loaded from pretrained
logger.info("Using pretrained model")
else:
logger.info("Starting from scratch")
def train(self):
"""Start training"""
logger.info("Starting training")
# Log configuration to Trackio
if self.monitor and self.monitor.enable_tracking:
config_dict = {k: v for k, v in self.config.__dict__.items()
if not k.startswith('_')}
self.monitor.log_config(config_dict)
# Log experiment URL
experiment_url = self.monitor.get_experiment_url()
if experiment_url:
logger.info("Trackio experiment URL: %s", experiment_url)
# Load checkpoint if resuming
if self.init_from == "resume":
checkpoint_path = "/input-checkpoint"
if os.path.exists(checkpoint_path):
self.load_checkpoint(checkpoint_path)
else:
logger.warning("Checkpoint path %s not found, starting from scratch", checkpoint_path)
# Start training
try:
logger.info("About to start trainer.train()")
train_result = self.trainer.train()
# Save the final model
self.trainer.save_model()
# Save training results
with open(os.path.join(self.output_dir, "train_results.json"), "w") as f:
json.dump(train_result.metrics, f, indent=2)
# Log training summary to Trackio
if self.monitor and self.monitor.enable_tracking:
summary = {
'final_loss': train_result.metrics.get('train_loss', 0),
'total_steps': train_result.metrics.get('train_runtime', 0),
'training_time': train_result.metrics.get('train_runtime', 0),
'output_dir': self.output_dir,
'model_name': getattr(self.config, 'model_name', 'unknown'),
}
self.monitor.log_training_summary(summary)
self.monitor.close()
logger.info("Training completed successfully!")
logger.info("Training metrics: %s", train_result.metrics)
except Exception as e:
logger.error("Training failed: %s", e)
# Close monitoring on error
if self.monitor and self.monitor.enable_tracking:
self.monitor.close()
raise
def evaluate(self):
"""Evaluate the model"""
logger.info("Starting evaluation")
try:
eval_results = self.trainer.evaluate()
# Save evaluation results
with open(os.path.join(self.output_dir, "eval_results.json"), "w") as f:
json.dump(eval_results, f, indent=2)
logger.info("Evaluation completed: %s", eval_results)
return eval_results
except Exception as e:
logger.error("Evaluation failed: %s", e)
raise
def save_model(self, path: Optional[str] = None):
"""Save the trained model"""
save_path = path or self.output_dir
logger.info("Saving model to %s", save_path)
try:
self.trainer.save_model(save_path)
self.model.tokenizer.save_pretrained(save_path)
# Save training configuration
if self.config:
config_dict = {k: v for k, v in self.config.__dict__.items()
if not k.startswith('_')}
with open(os.path.join(save_path, 'training_config.json'), 'w') as f:
json.dump(config_dict, f, indent=2, default=str)
logger.info("Model saved successfully!")
except Exception as e:
logger.error("Failed to save model: %s", e)
raise
class SmolLM3DPOTrainer:
"""DPO Trainer for SmolLM3 preference optimization"""
def __init__(
self,
model,
dataset,
config,
output_dir: str,
ref_model=None
):
self.model = model
self.dataset = dataset
self.config = config
self.output_dir = output_dir
self.ref_model = ref_model
# Setup DPO trainer
self.trainer = self._setup_dpo_trainer()
def _setup_dpo_trainer(self):
"""Setup DPO trainer"""
from trl import DPOTrainer
# Get training arguments
training_args = self.model.get_training_arguments(
output_dir=self.output_dir,
save_steps=self.config.save_steps,
eval_steps=self.config.eval_steps,
logging_steps=self.config.logging_steps,
max_steps=self.config.max_iters,
)
# Get preference dataset
train_dataset = self.dataset.get_train_dataset()
eval_dataset = self.dataset.get_eval_dataset()
# Setup DPO trainer
trainer = DPOTrainer(
model=self.model.model,
ref_model=self.ref_model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=self.model.tokenizer,
max_prompt_length=self.config.max_seq_length // 2,
max_length=self.config.max_seq_length,
)
return trainer
def train(self):
"""Start DPO training"""
logger.info("Starting DPO training")
try:
train_result = self.trainer.train()
# Save the final model
self.trainer.save_model()
# Save training results
with open(os.path.join(self.output_dir, "dpo_train_results.json"), "w") as f:
json.dump(train_result.metrics, f, indent=2)
logger.info("DPO training completed successfully!")
logger.info("Training metrics: %s", train_result.metrics)
except Exception as e:
logger.error("DPO training failed: %s", e)
raise |